2
主成分分析中双峰的解释
我遇到了一个很好的教程:《使用R进行统计分析的手册》。第13章。主成分分析:奥林匹克七项全能,其中涉及如何用R语言进行PCA。我不理解图13.3的解释: 因此,我正在绘制第一个特征向量与第二个特征向量。这意味着什么?假设对应于第一特征向量的特征值解释了数据集中60%的变化,第二特征值-特征向量解释了20%的变化。将它们相互绘制意味着什么?
主成分分析(PCA)是线性降维技术。它将多变量数据集简化为较小的构造变量集,以保留尽可能多的信息(尽可能多的方差)。这些变量称为主成分,是输入变量的线性组合。