线性回归中的显着矛盾:系数的显着t检验与总体F统计量的不显着
我正在4个类别变量(每个有4个级别)和一个数值输出之间拟合多元线性回归模型。我的数据集有43个观测值。 回归为每个斜率系数提供了检验的以下:。因此,第4个预测变量的系数在置信度下很重要。pppttt.15,.67,.27,.02.15,.67,.27,.02.15, .67, .27, .02α=.05α=.05\alpha = .05 另一方面,从我所有斜率系数都为零的零假设的整体检验中,回归给出了值。对于我的数据集,此值为。pppFFFppp.11.11.11 我的问题:我应该如何解释这些结果?其中ppp我应该使用值,为什么?在α = 0.05的置信度下,第4个变量的系数是否与000显着不同?α=.05α=.05\alpha = .05 我已经看到了相关的问题,FFF和ttt的回归统计,但有相反的情况:高ttt -test ppp -值和低FFF -test ppp -值。老实说,我不太了解为什么除了t检验外还需要FFF检验,以了解线性回归系数是否显着不同于零。ttt