Questions tagged «statsmodels»


2
逻辑回归:Scikit学习与统计模型
我试图理解为什么这两个库的逻辑回归的输出会给出不同的结果。 我使用从加州大学洛杉矶分校idre数据集教程,预测admit基础上gre,gpa和rank。rank被视为分类变量,因此先将其rank_1删除后转换为虚拟变量。还添加了一个拦截列。 df = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv") y, X = dmatrices('admit ~ gre + gpa + C(rank)', df, return_type = 'dataframe') X.head() > Intercept C(rank)[T.2] C(rank)[T.3] C(rank)[T.4] gre gpa 0 1 0 1 0 380 3.61 1 1 0 1 0 660 3.67 2 1 0 0 0 800 4.00 3 1 …

3
分析ACF和PACF图
我想看看我是否在分析我的ACF和PACF曲线的正确轨道上: 背景:(参考文献:菲利普·汉斯·弗朗西斯,1998年) 由于ACF和PACF都显示出重要的价值,因此我认为ARMA模型将满足我的需求 ACF可用于估计MA部分,即q值,PACF可用于估计AR部分,即p值 为了估计模型阶数,我查看了a。)ACF值是否足够消亡,b。)ACF信号是否过度差分,以及c。)ACF和PACF在某些滞后是否显示任何明显且易于解释的峰值 ACF和PACF可能不仅建议一种模型,而且在考虑其他诊断工具后需要从许多模型中进行选择 考虑到这一点,我继续说,最明显的模型似乎是ARMA(4,2),因为ACF值在滞后4处消失,而PACF在1和2处出现尖峰。 另一种分析方法是ARMA(2,1),因为我看到我的PACF中出现两个明显的峰值,而我的ACF中出现一个明显的峰值(此后,值从更低的点(0.4)开始消失。 查看我的样本内预测结果(使用简单的平均绝对百分比误差),ARMA(2,1)的结果要比ARMA(4,2)好得多。所以我使用ARMA(2,1)! 您能否确认我的分析ACF和PACF图的方法和发现? 帮助赞赏! 编辑: 描述性统计: count 252.000000 mean 29.576151 std 7.817171 min -0.920000 25% 26.877500 50% 30.910000 75% 34.915000 max 47.430000 Skewness of endog_var: [-1.35798399] Kurtsosis of endog_var: [ 5.4917757] Augmented Dickey-Fuller Test for endog_var: (-3.76140904255411, 0.0033277703768345287, {'5%': -2.8696473721448728, '1%': -3.4487489051519011, '10%': …

3
statsmodel OLS和scikit线性回归之间的差异
我有一个关于来自不同库的两种不同方法的问题,这些方法似乎做同样的工作。我正在尝试建立线性回归模型。 这是我将statsmodel库与OLS一起使用的代码: X_train, X_test, y_train, y_test = cross_validation.train_test_split(x, y, test_size=0.3, random_state=1) x_train = sm.add_constant(X_train) model = sm.OLS(y_train, x_train) results = model.fit() print "GFT + Wiki / GT R-squared", results.rsquared 打印输出GFT + Wiki / GT R平方0.981434611923 第二个是scikit学习库线性模型方法: model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) print 'GFT + Wiki / GT …

1
Python中的顺序逻辑回归
我想在Python中运行顺序逻辑回归-对于具有三个级别并具有一些解释性因素的响应变量。该statsmodels软件包支持二进制logit和多项式logit(MNLogit)模型,但不支持有序logit。由于基础数学没有太大不同,我想知道是否可以使用这些方法轻松实现?(或者,其他可以使用的Python软件包也受到赞赏。)

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.