Questions tagged «weibull»

1
自由度可以是非整数吗?
当我使用GAM时,它给了我剩余的DF为(代码的最后一行)。这意味着什么?超越GAM示例,通常,自由度可以是非整数吗?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 1.2445 6.0516 (Dispersion Parameter for gaussian family taken to be 6.6717) Null Deviance: 1126.047 on 31 degrees of freedom Residual Deviance: 177.4662 on 26.6 degrees of …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

4
威布尔分布的EM最大似然估计
注意: 我发布的是我的一位前学生的问题,由于技术原因,他自己无法发布。 给定来自pdf的Weibull分布的iid样本, 那里是有用的缺失变量表示 ,因此可以使用关联的EM(期望最大化)算法来查找的MLE ,而不是直接使用数值优化?x1,…,xnx1,…,xñx_1,\ldots,x_nFķ(x)=kxk−1e−xkx>0fk(x)=kxk−1e−xkx>0 f_k(x) = k x^{k-1} e^{-x^k} \quad x>0 fk(x)=∫Zgk(x,z)dzfk(x)=∫Zgk(x,z)dzf_k(x) = \int_\mathcal{Z} g_k(x,z)\,\text{d}zkkk



1
GBM软件包与使用GBM的插入符
我一直在使用进行模型调整caret,但随后使用该gbm软件包重新运行模型。据我了解,caret程序包使用gbm的输出应相同。然而,data(iris)使用RMSE和R ^ 2作为评估指标,使用进行的快速测试显示模型中的差异约为5%。我想使用来找到最佳模型性能,caret但要重新运行gbm以利用部分依赖图。下面的代码具有可重复性。 我的问题是: 1)为什么即使这两个软件包应该相同,我仍会看到这两个软件包之间的差异(我知道它们是随机的,但5%的差异还是很大的,尤其是当我没有使用iris建模时使用的很好的数据集时) 。 2)同时使用这两个软件包有什么优点或缺点? 3)不相关:使用iris数据集时,最佳interaction.depth值为5,但高于我所阅读的最大值,使用最大值floor(sqrt(ncol(iris)))为2。这是严格的经验法则还是非常灵活? library(caret) library(gbm) library(hydroGOF) library(Metrics) data(iris) # Using caret caretGrid <- expand.grid(interaction.depth=c(1, 3, 5), n.trees = (0:50)*50, shrinkage=c(0.01, 0.001), n.minobsinnode=10) metric <- "RMSE" trainControl <- trainControl(method="cv", number=10) set.seed(99) gbm.caret <- train(Sepal.Length ~ ., data=iris, distribution="gaussian", method="gbm", trControl=trainControl, verbose=FALSE, tuneGrid=caretGrid, metric=metric, bag.fraction=0.75) print(gbm.caret) # …

4
我可以对偏斜和非正常数据使用Z分数吗?[关闭]
已关闭。这个问题需要细节或说明。它当前不接受答案。 想改善这个问题吗?添加细节并通过编辑此帖子来澄清问题。 5年前关闭。 我一直在处理一些过程周期时间数据,并使用标准的z分数进行缩放,以便在整个周期时间的各个部分之间进行比较。 由于数据严重右偏/非正常,我是否应该使用其他转换?(“异常值”永远不会花费消极时间,并且通常比“平均”花费更长的时间) 使用z分数似乎仍然“有效” ... ############### # R code ############### mydata <- rweibull(1000,1,1.5) hist(mydata) hist(scale(mydata))

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.