Questions tagged «yates-correction»

5
如何在大量数据点中进行值的插补?
我的数据集非常大,大约缺少5%的随机值。这些变量相互关联。以下示例R数据集只是一个具有虚拟相关数据的玩具示例。 set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, sep ="") rownames(xmat) <- paste("sample", 1:200, sep = "") #M variables are correlated N <- 2000000*0.05 # 5% random missing values inds <- round ( runif(N, 1, length(xmat)) …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

2
耶茨连续性校正2 x 2列联表
我想收集有关2 x 2列联表的Yates连续性校正领域的人们的意见。维基百科文章提到它可能会调整得太远,因此仅在有限的意义上使用。这里的相关文章没有提供更多的见解。 那么对于定期使用这些测试的人,您有何想法?使用校正是否更好? 一个真实的例子,在95%的置信水平下会产生不同的结果。请注意,这是一个作业问题,但是我们的班级根本不处理Yates的连续性校正,因此,即使您没有为我做作业,也请入睡。 samp <- matrix(c(13, 12, 15, 3), byrow = TRUE, ncol = 2) colnames(samp) <- c("No", "Yes") rownames(samp) <- c("Female", "Male") chisq.test(samp, correct = TRUE) chisq.test(samp, correct = FALSE)
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.