为什么等距点的表现不好?
实验说明: 在拉格朗日插值中,精确的方程在NNN个点(多项式N−1N−1N - 1)处采样,并在101个点处插值。这里从2变化到64。每个时间,和制备误差图。可以看出,当在等距点对函数进行采样时,误差开始下降(直到小于约15时才会发生),然后误差随着进一步增加而上升。NNNL1L1L_1L2L2L_2L∞L∞L_\inftyNNNNNN 而如果初始采样是在Legendre-Gauss(LG)点(Legendre多项式的根)或Legendre-Gauss-Lobatto(LGL)点(Lobatto多项式的根)进行的,则误差降至机器级别,并且不会当进一步增加时增加。NNN 我的问题是 等距点到底会发生什么? 为什么多项式阶数增加会导致误差在某个点之后上升? 这是否还意味着如果我将等距点用于WENO / ENO重建(使用拉格朗日多项式),那么在平滑区域中,我会得到错误?(嗯,这些只是假设的问题(以我的理解),对于WENO方案,重建15或更高阶数的多项式确实是不合理的) 额外细节: 功能近似: X∈[-1,1]f(x)=cos(π2 x)f(x)=cos(π2 x)f(x) = \cos(\frac{\pi}{2}~x),x∈[−1,1]x∈[−1,1]x \in [-1, 1] ñxxx分为等距点(以后称为LG)点。每次在101点插值该函数。NNN 结果: a)等距点(插值): N=65N=65N = 65 b)等距点(误差图,对数刻度): a)LG点(插值): N=65N=65N = 65 b)LG点(误差图,对数刻度):