Questions tagged «profile-likelihood»

3
对数转换的预测变量和/或响应的解释
我想知道是否仅对因变量(无论是因变量还是自变量)还是仅对自变量进行了对数转换,在解释上是否有所不同。 考虑以下情况 log(DV) = Intercept + B1*IV + Error 我可以将IV解释为百分比增长,但是当我拥有 log(DV) = Intercept + B1*log(IV) + Error 或当我有 DV = Intercept + B1*log(IV) + Error ?
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

3
手动计算逻辑回归95%置信区间与在R中使用confint()函数之间为什么会有区别?
亲爱的大家-我注意到我无法解释的怪事,可以吗?总之:在logistic回归模型中计算置信区间的手动方法和R函数confint()得出不同的结果。 我一直在研究Hosmer&Lemeshow的Applied Logistic回归(第二版)。在第3章中,有一个计算比值比和95%置信区间的示例。使用R,我可以轻松地重现模型: Call: glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -1.734 -0.847 -0.847 0.709 1.549 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.8408 0.2551 -3.296 0.00098 *** as.factor(dataset$dich.age)1 2.0935 0.5285 3.961 7.46e-05 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

1
基于轮廓似然性构造置信区间
在我的基础统计学课程中,我学习了如何基于“大”样本量的渐近正态性构造95%的置信区间,例如总体均值。除了重采样方法(例如引导程序)以外,还有另一种基于“轮廓可能性”的方法。有人可以阐明这种方法吗?μμ\mu 在什么情况下,基于渐近正态性和轮廓似然性构造的95%CI是可比的?我找不到关于此主题的任何参考,请提供任何建议的参考吗?为什么没有更广泛地使用它?

1
轮廓可能性的缺点是什么?
考虑参数的向量,其中是目标参数,而是令人讨厌的参数。θ 1 θ 2(θ1个,θ2)(θ1,θ2)(\theta_1, \theta_2)θ1个θ1\theta_1θ2θ2\theta_2 如果是根据数据构造的似然度,则的轮廓似然度定义为其中是的MLE,固定值为。X θ 1个大号P(θ 1 ; X )= 大号(θ 1,θ 2(θ 1); X )θ 2(θ 1)θ 2 θ 1大号(θ1个,θ2; X )L(θ1,θ2;x)L(\theta_1, \theta_2 ; x)Xxxθ1个θ1\theta_1大号P(θ1个; x )= L (θ1个,θ^2(θ1个); X )LP(θ1;x)=L(θ1,θ^2(θ1);x)L_P(\theta_1 ; x) = L(\theta_1, \hat{\theta}_2(\theta_1) ; x)θ^2(θ1个)θ^2(θ1) \hat{\theta}_2(\theta_1)θ2θ2\theta_2θ1个θ1\theta_1 ∙∙\bullet关于的轮廓似然最大化会导致与相同的估计,而后者是同时通过关于和的似然最大化而获得的。θ 1 θ 1 θ 2θ1个θ1\theta_1θ^1个θ^1\hat{\theta}_1θ1个θ1\theta_1θ2θ2\theta_2 ∙∙\bullet我认为的标准偏差也可以根据轮廓似然的二阶导数来估算。θ^1个θ^1\hat{\theta}_1 ∙∙\bullet的似然统计量可以用轮廓似然表示:。H0:θ1个= …

3
轮廓似然与置信区间之间的关系是什么?
为了制作这张图表,我从均值= 0和sd = 1的正态分布中生成了大小不同的随机样本。然后使用t.test()函数使用从0.001到.999(红线)范围内的alpha截止值来计算置信区间,并使用下面的代码在线下计算代码的轮廓似然性(我可以暂时找不到链接:编辑:找到它),这由蓝线表示。绿线表示使用R density()函数的归一化密度,数据由每个图表底部的方框图显示。右边是95%置信区间(红色)和最大似然区间的1/20(蓝色)的毛毛虫图。 用于轮廓可能性的R代码: #mn=mean(dat) muVals <- seq(low,high, length = 1000) likVals <- sapply(muVals, function(mu){ (sum((dat - mu)^2) / sum((dat - mn)^2)) ^ (-n/2) } ) 我的具体问题是,这两种类型的间隔之间是否存在已知关系,为什么除了n = 3以外,所有情况下的置信区间似乎都比较保守。还需要有关我的计算是否有效(以及一种更好的方法)以及这两种类型的区间之间的一般关系的评论/答案。 R代码: samp.size=c(3,4,5,10,20,1000) cnt2<-1 ints=matrix(nrow=length(samp.size),ncol=4) layout(matrix(c(1,2,7,3,4,7,5,6,7),nrow=3,ncol=3, byrow=T)) par(mar=c(5.1,4.1,4.1,4.1)) for(j in samp.size){ #set.seed(200) dat<-rnorm(j,0,1) vals<-seq(.001,.999, by=.001) cis<-matrix(nrow=length(vals),ncol=3) cnt<-1 for(ci in vals){ …

2
轮廓似然的Hessian用于标准误差估计
这个问题是由这个问题引起的。我查找了两个来源,这就是我发现的内容。 A. van der Vaart,渐进统计: 几乎不可能显式计算轮廓似然,但其数值评估通常是可行的。然后,轮廓似然可用于减小似然函数的维数。轮廓似然函数通常以与参数模型的(普通)似然函数相同的方式使用。除了上述的最大的他们的点作为估计,在二阶导数用作的估计减去e的渐近协方差矩阵的逆矩阵。最近的研究似乎证实了这种做法。 θθ^θ^\hat\thetaθ^θ^\hat\theta J. Wooldridge,《截面和面板数据的计量经济学分析》(两个版本均相同): 作为研究渐近性质的设备,由于通常取决于所有,因此集中目标函数的值是有限的,在这种情况下,目标函数不能写为独立的,均匀分布的求和的和。当我们从某些非线性面板数据模型集中特定于个体的效果时,就会出现一种方程式(12.89)是iid函数之和的设置。此外,集中目标函数对于建立看似不同的估算方法的等效性可能很有用。WG(W,β)g(W,β)g(W,\beta)w ^WW Wooldridge在更广泛的M估计量上下文中讨论了这个问题,因此它也适用于最大似然估计量。 因此,对于同一个问题,我们得到两个不同的答案。我认为魔鬼在于细节。对于某些模型,对于某些模型,我们可以安全地使用轮廓似然的hessian。是否有任何一般结果为我们何时(或不能这样做)提供条件?

1
如何在ARIMA模型的观察值48中加入创新的离群值?
我正在处理数据集。使用一些模型识别技术后,我得出了一个ARIMA(0,2,1)模型。 我使用R detectIO包TSA中的函数在对原始数据集进行第48次观察时检测到创新的离群值(IO)。 如何将这个离群值合并到模型中,以便将其用于预测?我不想使用ARIMAX模型,因为我可能无法根据R中的模型做出任何预测。还有其他方法可以做到吗? 以下是我的价值观: VALUE <- scan() 4.6 4.5 4.4 4.5 4.4 4.6 4.7 4.6 4.7 4.7 4.7 5.0 5.0 4.9 5.1 5.0 5.4 5.6 5.8 6.1 6.1 6.5 6.8 7.3 7.8 8.3 8.7 9.0 9.4 9.5 9.5 9.6 9.8 10.0 9.9 9.9 9.8 9.8 9.9 9.9 9.6 9.4 …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

2
如何通过对R中使用optim最大化对数似然函数所估计的参数进行分析,从而估计出95%的置信区间?
如何通过对R中使用optim最大化对数似然函数所估计的参数进行分析,从而估计出95%的置信区间? 我知道我可以通过反转hessian渐近估计协方差矩阵,但我担心我的数据不符合该方法有效所需的假设。我希望使用其他方法来估计置信区间。 如Stryhn和Christensen以及Venables和Ripley的MASS书第8.4节,第220-221页中所述,轮廓似然方法是否合适? 如果是这样,是否有任何软件包可以帮助我在R中做到这一点?如果没有,这种方法的伪代码将是什么样?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.