神经网络在权宜之计上是否存在卷积的数学原因?
在卷积神经网络(CNN)中,在进行卷积之前,每一步的权重矩阵都需要翻转其行和列以获得内核矩阵。Hugo Larochelle 在以下一系列视频中对此进行了解释: daccess-ods.un.org daccess-ods.un.org计算隐藏映射将对应于使用内核矩阵对来自上一层的信道进行离散卷积,并且该内核是根据隐藏权重矩阵WijWijW_{ij},我们在其中翻转行和列。 如果像其他类型的NN一样将卷积的减少步长与常规矩阵乘法进行比较,权宜之计将是一个明确的解释。但是,这可能不是最相关的比较... 在数字成像处理中,将滤镜卷积到图像上(对于实际直觉来说这是一个很棒的youtube视频)似乎与以下内容有关: 该事实卷积是缔合而(交叉)的相关是没有的。 由于时域中的卷积等效于频域中的乘法(卷积定理),因此可以在图像的频域中将滤波器作为乘法应用。 在这种特定的技术环境中,DSP 相关定义为: F∘I(x,y)=∑j=−NN∑i=−NNF(i,j)I(x+i,y+j)F∘I(x,y)=∑j=−NN∑i=−NNF(i,j)I(x+i,y+j)F\circ I(x,y)=\sum_{j=-N}^{N}\sum_{i=-N}^N\, F(i,j)\,I(x+i, y+j) 这实际上是Hadamard乘积中所有单元的总和: F∘I(x,y)=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢F[−N,−N]I[x−N,y−N]⋮F[0,−N]I[x,y−N]⋮F[N,−N]I[x+N,y−N]⋯⋱⋯⋱⋯F[−N,0]I[x−N,y−N]⋮F[0,0]I[x,y]⋮F[N,0]I[x+N,y]⋯⋱⋯⋱⋯F[−N,N]I[x−N,y+N]⋮F[0,N]I[x,y+N]⋮F[N,N]I[x+N,y+N]⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥F∘I(x,y)=[F[−N,−N]I[x−N,y−N]⋯F[−N,0]I[x−N,y−N]⋯F[−N,N]I[x−N,y+N]⋮⋱⋮⋱⋮F[0,−N]I[x,y−N]⋯F[0,0]I[x,y]⋯F[0,N]I[x,y+N]⋮⋱⋮⋱⋮F[N,−N]I[x+N,y−N]⋯F[N,0]I[x+N,y]⋯F[N,N]I[x+N,y+N]]\small F\circ I(x,y)=\Tiny\begin{bmatrix}F[-N,-N]\,I[x-N,y-N]&\cdots&F[-N,0]\,I[x-N,y-N]&\cdots& F[-N,N]\,I[x-N,y+N]\\ \vdots&\ddots&\vdots&\ddots&\vdots\\ F[0,-N]\,I[x,y-N]&\cdots&F[0,0]\,I[x,y]&\cdots& F[0,N]\,I[x,y+N]\\ \vdots&\ddots&\vdots&\ddots&\vdots\\ F[N,-N]\,I[x+N,y-N]&\cdots&F[N,0]\,I[x+N,y]&\cdots& F[N,N]\,I[x+N,y+N]\\ \end{bmatrix} 其中是一个滤波函数(表示为矩阵),而I (x ,y )是位置(x ,y )上图像的像素值:F(i,j)F(i,j)F(i,j)I(x,y)I(x,y)I(x,y)(x,y)(x,y)(x,y) 互相关的目的是评估探针图像与测试图像的相似程度。互相关图的计算依赖于卷积定理。 另一方面,卷积定义为: F∗I(x,y)=∑j=−NN∑i=−NNF(i,j)I(x−i,y−j)F∗I(x,y)=∑j=−NN∑i=−NNF(i,j)I(x−i,y−j)F* I(x,y)=\sum_{j=-N}^{N}\sum_{i=-N}^N\, F(i,j)\,I(x-i, y-j) 只要过滤器是对称的,就与过滤器的行和列翻转的相关操作相同: F∗I(x,y)=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢F[N,N]I[x−N,y−N]⋮F[0,N]I[x,y−N]⋮F[−N,−N]I[x+N,y−N]⋯⋱⋯⋱⋯F[N,0]I[x−N,y−N]⋮F[0,0]I[x,y]⋮F[−N,0]I[x+N,y]⋯⋱⋯⋱⋯F[N,−N]I[x−N,y+N]⋮F[0,−N]I[x,y+N]⋮F[−N,−N]I[x+N,y+N]⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥F∗I(x,y)=[F[N,N]I[x−N,y−N]⋯F[N,0]I[x−N,y−N]⋯F[N,−N]I[x−N,y+N]⋮⋱⋮⋱⋮F[0,N]I[x,y−N]⋯F[0,0]I[x,y]⋯F[0,−N]I[x,y+N]⋮⋱⋮⋱⋮F[−N,−N]I[x+N,y−N]⋯F[−N,0]I[x+N,y]⋯F[−N,−N]I[x+N,y+N]]\small F* I(x,y)=\Tiny\begin{bmatrix}F[N,N]\,I[x-N,y-N]&\cdots&F[N,0]\,I[x-N,y-N]&\cdots& F[N,-N]\,I[x-N,y+N]\\ \vdots&\ddots&\vdots&\ddots&\vdots\\ F[0,N]\,I[x,y-N]&\cdots&F[0,0]\,I[x,y]&\cdots& F[0,-N]\,I[x,y+N]\\ \vdots&\ddots&\vdots&\ddots&\vdots\\ F[-N,-N]\,I[x+N,y-N]&\cdots&F[-N,0]\,I[x+N,y]&\cdots& F[-N,-N]\,I[x+N,y+N]\\ …