2
为什么Wilks 1938年的证明不适用于错误指定的模型?
在1938年著名的论文中(“ 用于检验复合假设的似然比的大样本分布 ”,《数学统计年鉴》 9:60-62),塞缪尔·威尔克斯推导了(对数似然比)的渐近分布。对于嵌套假设,在正确指定了较大假设的前提下。极限分布为(卡方),具有自由度,其中是较大假设中的参数数,χ 2 ħ - 米ħ 米2 × L L R2×大号大号[R2 \times LLRχ2χ2\chi^2ħ - 米H-米h-mHHh米米m是嵌套假设中自由参数的数量。然而,众所周知,当假设被错误指定时(即,当较大的假设不是采样数据的真实分布时),该结果将不成立。 谁能解释为什么?在我看来,Wilks的证明应该仍然可以进行较小的修改。它依靠最大似然估计(MLE)的渐近正态性,但对于错误指定的模型仍然适用。唯一的不同是有限多元法线的协方差矩阵:对于正确指定的模型,我们可以使用反Fisher信息矩阵来近似协方差矩阵,而使用错误指定,可以使用协方差矩阵的三明治估计()。正确指定模型后,后者简化为Fisher信息矩阵的逆矩阵(因为 J − 1 K J − 1 J = KĴ− 1Ĵ-1个J^{-1}Ĵ− 1ķĴ− 1Ĵ-1个ķĴ-1个J^{-1} K J^{-1}Ĵ= KĴ=ķJ = K)。在AFAICT中,只要我们具有MLE的多元正态的可逆渐近协方差矩阵(Wilks论文中的),Wilks证明并不关心协方差矩阵的估计值从哪里来。 C− 1C-1个c^{-1}