条件均值独立性意味着OLS估计量的无偏性和一致性
考虑以下多元回归模型:Y=Xβ+Zδ+U.(1)(1)Y=Xβ+Zδ+U.Y=X\beta+Z\delta+U.\tag{1} 这里是列向量; a矩阵; a列向量; Z a n \ times l矩阵;\增量一升\次1个的列向量; 和U,误差项,n \ times1列向量。YYYn×1n×1n\times 1XXXn×(k+1)n×(k+1)n\times (k+1)ββ\beta(k+1)×1(k+1)×1(k+1)\times 1ZZZn×ln×ln\times lδδ\deltal×1l×1l\times 1UUUn×1n×1n\times1 题 我的讲师是《计量经济学概论》教科书,第三版。 詹姆斯·H·斯托克(James H. Stock)和马克·沃森(Mark W.Watson)281,和《计量经济学:荣誉考试复习会》(PDF),第2页。7,向我表达了以下内容。 如果我们假设所谓的条件平均独立性,根据定义,这意味着E(U|X,Z)=E(U|Z),(2)(2)E(U|X,Z)=E(U|Z),E(U|X,Z)=E(U|Z),\tag{2} 并且如果满足最小二乘假设,但条件均值零假设(因此,我们假设)(请参阅1 -3以下),E(U|X,Z)=0E(U|X,Z)=0E(U|X,Z)=0E(U|X,Z)=E(U|Z)≠0E(U|X,Z)=E(U|Z)≠0E(U|X,Z)=E(U|Z) \neq 0 然后,在这个较弱的假设集合下,中的OLS估计量保持无偏且一致。β^β^\hat{\beta}ββ\beta(1)(1)(1) 我如何证明这一主张?即,1和2以上意味着OLS估计给了我们一个公正的和一致的估计?是否有任何研究文章证明这一主张?ββ\betaββ\beta 评论 最简单的情况是通过考虑线性回归模型给出并证明了OLS估计的如果每个,则是无偏的。Yi=β0+β1Xi+β2Zi+ui,i=1,2,…,n,Yi=β0+β1Xi+β2Zi+ui,i=1,2,…,n,Y_i=\beta_0+\beta_1X_i+\beta_2Z_i+u_i,\quad i=1,2,\ldots,n,β 1 β 1 È (û 我| X 我,Ž 我)= È (û 我| Ž 我)我β^1β^1\hat{\beta}_1β1β1\beta_1E(ui|Xi,Zi)=E(ui|Zi)E(ui|Xi,Zi)=E(ui|Zi)E(u_i|X_i,Z_i)=E(u_i|Z_i)iii 证明无偏的假设和共同正态分布UiUiU_iZiZiZ_i 定义,然后和因此,可以重写为通过,得出现在,由于和共同为正态分布,因此正态分布的理论请参见。推导多元正态分布的条件分布,表示(实际上,我们不需要假设联合正态性,而只需假设此同一性)对于某乘矢量V=U−E(U|X,Z)V=U−E(U|X,Z)V=U-E(U|X,Z)U=V+E(U|X,Z)U=V+E(U|X,Z)U=V+E(U|X,Z)E(V|X,Z)=0.(*)(*)E(V|X,Z)=0.E(V|X,Z)=0\tag{*}.(1)(1)(1)Y=Xβ+Zδ+E(U|X,Z)+V.(3)(3)Y=Xβ+Zδ+E(U|X,Z)+V.Y=X\beta+Z\delta+E(U|X,Z)+V.\tag{3}(2)(2)(2)Y=Xβ+Zδ+E(U|Z)+V.(4)(4)Y=Xβ+Zδ+E(U|Z)+V.Y=X\beta+Z\delta+E(U|Z)+V.\tag{4}UiUiU_iZiZiZ_i …