Questions tagged «philosophical»

有关统计学或概率哲学的问题:概率的解释,常客/贝叶斯统计学的基础问题等。请勿将此标记用于一般的推测性问题(又称“哲学性”)。

16
正常性测试“基本上没有用”吗?
一位前同事曾经对我说过以下话: 我们通常将正态性检验应用于过程的结果,该过程的结果在null下会生成仅渐近或接近正常的随机变量 (“渐近”部分取决于一些我们不能做大的数量);在廉价内存,大数据和快速处理器的时代,正态性测试应 始终拒绝大型(尽管不是那么大)样本的正态分布无效。因此,相反地,正常性测试仅应用于较小的样本,前提是它们可能具有较低的功效且对I型速率的控制较少。 这是有效的论点吗?这是众所周知的论点吗?是否有比“正常”更模糊的零假设的著名检验?


14
为什么没有可靠(和可靠)的统计数据代替经典技术?
当使用数据解决业务问题时,通常至少有一个关键的假设支撑经典统计数据是无效的。在大多数情况下,没有人会去检查那些假设,所以您永远不会真正知道。 例如,到目前为止,有如此多的常见Web指标是“长尾的”(相对于正态分布),有据可查,因此我们将其视为理所当然。另一个例子是在线社区,即使在拥有成千上万成员的社区中,也有据可查的是,到目前为止,在许多此类社区中,对贡献/参与的最大贡献是由微不足道的“超级贡献者”群体造成的。(例如,几个月前,SO API在Beta中可用后,StackOverflow成员发布了他通过API收集的数据的简要分析;他的结论- 不到百分之一的SO成员占了大部分SO上的活动 (大概是提问,然后回答),剩下的1-2%占了绝大多数,绝大多数成员无所事事。 这类分布(通常是规则而不是例外)通常最好用幂律密度函数建模。对于这些类型的分布,甚至中心极限定理也难以应用。 因此,鉴于分析师对此感兴趣的人口众多,并且鉴于经典模型在这些数据上的表现明显较差,并且鉴于健壮且可靠的方法已经存在了一段时间(我相信至少有20年),为什么他们不经常使用吗?(我也想知道为什么我不经常使用它们,但这对CrossValidated来说并不是真正的问题。) 是的,我知道有些教科书章节专门介绍了可靠的统计信息,并且我知道有(一些)R程序包(robustbase是我熟悉和使用的R程序包),等等。 然而,鉴于这些技术的明显优势,它们通常显然是工作的更好工具- 为什么它们使用得不多?我们难道不希望看到与经典类似物相比,更可靠(更可靠)的统计数据使用得更多(也许甚至是推定)吗? 我听到的唯一实质性(即技术性)解释是,健壮的技术(同样适用于抗性方法)缺乏经典技术的功能/敏感性。我不知道在某些情况下是否确实如此,但是我确实在很多情况下都不是正确的。 最后的优先权:是的,我知道这个问题没有一个可以证明的正确答案;本网站上的问题很少。而且,这个问题是真正的询问。这不是提出观点的借口-我在这里没有观点,只是我希望为其提供一些有见地答案的问题。

14
什么时候(如果有的话)频频论的方法比贝叶斯方法更好?
背景:我没有接受贝叶斯统计方面的正式培训(尽管我对学习更多内容非常感兴趣),但我知道-我想知道的要点是为什么许多人觉得它们似乎比频率统计更可取。甚至我所教授的入门统计学(社会科学)课程中的大学生都发现贝叶斯方法很吸引人-“为什么我们对计算数据的概率感兴趣(给定null呢?)为什么我们不能仅仅量化是零假设还是替代假设?我也读过类似这样的线索,它们也证明了贝叶斯统计的经验优势,但后来我碰到了布拉斯科(Blasco,2001;重点强调): 如果动物育种者对与归纳相关的哲学问题不感兴趣,但对解决问题的工具感兴趣,那么贝叶斯推理派和惯常论推论派都已建立,并且没有必要证明为什么选择另一派或另一派来论证。除了一些复杂的案例外,它们现在都没有操作上的困难... 选择一所学校或另一所学校应与一所学校是否存在另一所学校没有提供的解决方案,解决问题的容易程度有关,以及科学家对特定表达方式的感觉如何。 问题:布拉斯科的名言似乎暗示,有时频频方法实际上比贝叶斯方法更可取。因此,我很好奇:什么时候比贝叶斯方法更偏爱常去方法?我对从概念上(即什么时候知道以原假设为条件的数据的概率特别有用?)和凭经验(即在什么条件下Frequentist方法优于贝叶斯方法?)都可以解决这个问题的答案感兴趣。 如果答案尽可能地易于传达也将是可取的-最好将一些答案反馈给我的班级以与我的学生分享(尽管我知道需要一定程度的技术性)。 最后,尽管经常使用频率统计,但实际上我对贝叶斯全盘获胜的可能性持开放态度。

8
生成与现有变量具有定义的相关性的随机变量
对于模拟研究,我必须生成随机变量,这些变量显示与现有变量的预定义(填充)相关性。ÿYY 我研究了这些R软件包copula,CDVine它们可以生成具有给定依赖关系结构的随机多变量分布。但是,不可能将结果变量之一固定为现有变量。 任何想法和现有功能的链接表示赞赏! 结论: 提出了两个有效的答案,有不同的解决方案: 一个R 脚本由卡拉卡尔,其计算与一个随机变量精确(样品)的相关性,以一个预定义的变量 我发现了一个R 函数,该函数计算与预定义变量具有定义的总体相关性的随机变量 [@ttnphns的补充:我可以自由地将问题标题从单个固定变量的情况扩展到任意数量的固定变量;即如何生成具有预定义正确性和一些固定的现有变量的变量]

11
当我的模型错误时,为什么我应该是贝叶斯?
编辑:我添加了一个简单的示例:的均值的推断。我还稍微澄清了为什么不匹配置信区间的可信区间是不好的。XiXiX_i 我是一位虔诚的贝叶斯主义者,正处于某种信仰危机之中。 我的问题如下。假设我要分析一些IID数据。我要做的是:XiXiX_i 首先,提出一个条件模型: p(X|θ)p(X|θ) p(X|\theta) 然后,选择的先验值: θθ\thetap(θ)p(θ) p(\theta) 最后,应用贝叶斯法则,计算后验:(或者应该近似计算,如果它不能计算),并回答我对所有疑问p(θ|X1…Xn)p(θ|X1…Xn)p(\theta | X_1 \dots X_n )θθ\theta 这是一个明智的方法:如果数据的真实模型确实在我的条件的“内部”(它对应于某个值),那么我可以呼吁统计决策理论说我的方法是可以接受的(请参阅Robert's有关详细信息,请参见“贝叶斯选择”;在所有相关章节中,“所有统计信息”也有明确说明。XiXiX_iθ0θ0\theta_0 但是,众所周知,假设我的模型正确无比:为什么自然应该整洁地落入我所考虑的模型的框内?假设对于所有值,数据的实模型与不同,这要现实得多。通常将其称为“错误指定”模型。p (X | θ )θptrue(X)ptrue(X)p_{true}(X)p(X|θ)p(X|θ)p(X|\theta)θθ\theta 我的问题是,在这种更为现实的,错误指定的情况下,与贝叶斯计算(即计算后验分布)相比,对于简单地计算最大似然估计器(MLE),我没有任何好的论据: θ^ML=argmaxθ[p(X1…Xn|θ)]θ^ML=arg⁡maxθ[p(X1…Xn|θ)] \hat \theta_{ML} = \arg \max_\theta [ p(X_1 \dots X_n |\theta) ] 实际上,根据Kleijn,vd Vaart(2012)的说法,在错误指定的情况下,后验分布为: 收敛为到以为中心的狄拉克分布θ中号大号n→∞n→∞n\rightarrow \infty θ^MLθ^ML\hat \theta_{ML} 没有正确的方差(除非两个值恰好相同),以确保后验的可信区间匹配置信区间。(请注意,虽然置信区间显然是贝叶斯人不太在意的事情,但从质量上讲,这意味着后验分布本质上是错误的,因为这意味着其可信区间没有正确的覆盖范围)θθ\theta 因此,我们为没有额外的属性而付出了计算上的额外费用(一般来说,贝叶斯推断要比MLE昂贵) 因此,最后,我的问题是:在模型指定不正确的情况下,是否有关于理论上或经验上的论据,用于对简单的MLE替代方法使用贝叶斯推理? (由于我知道我的问题通常不清楚,如果您不了解某些内容,请告诉我:我会尝试重新表述) 编辑:让我们考虑一个简单的示例:在高斯模型下推断的平均值(已知方差可以进一步简化)。我们考虑高斯先验:我们将表示为先验均值,表示的逆方差。令为的经验均值。最后,请注意:。 σ μ 0 β 0 …

10
贝叶斯与频频主义者的辩论是否有任何数学基础?
它在Wikipedia上说: 数学[概率]在很大程度上与概率的任何解释无关。 问题:那么如果我们想在数学上是正确的,我们是否不应该拒绝对概率的任何解释?即,贝叶斯主义和频繁主义在数学上都是错误的吗? 我不喜欢哲学,但是我喜欢数学,并且我想只在Kolmogorov公理的框架内工作。如果这是我的目标,应该从它说在维基百科上,我应该拒绝遵循双方贝叶斯和frequentism?如果这些概念纯粹是哲学上的而不是数学上的,那么为什么它们首先出现在统计学中? 背景/上下文: 这篇博客文章并没有说同样的话,但是它确实认为,从实用主义的角度来看,将技术归类为“贝叶斯”或“频率论者”是适得其反的。 如果Wikipedia的引用是正确的,那么从哲学的角度来看,试图对统计方法进行分类似乎也适得其反-如果一种方法在数学上是正确的,则当基础数学的假设成立时使用该方法是有效的否则,如果在数学上不正确或假设不成立,则使用它无效。 另一方面,尽管我不太确定为什么,但很多人似乎都用概率论(例如,柯尔莫哥洛夫的公理)来识别“贝叶斯推论”。贾恩斯(Jaynes)关于贝叶斯推理的论着称为“概率”(Probability),以及詹姆斯·斯通(James Stone)的书“贝叶斯规则”(Bayes'Rule)。因此,如果我以表面价值来接受这些主张,那意味着我应该更喜欢贝叶斯主义。 但是,Casella和Berger的书似乎是常客,因为它讨论了最大似然估计量,却忽略了最大后验估计量,但似乎其中的所有内容在数学上都是正确的。 那么,难道不是只能从统计学上说,统计学上唯一正确的版本是对贝叶斯主义和频繁主义完全不知情的统计吗?如果两种分类的方法在数学上都是正确的,那么在某些情况下偏爱某些方法不是不正确的做法,因为这将使模糊,定义不清的哲学优先于精确且定义明确的数学吗? 简介:简而言之,我不了解贝叶斯与常客辩论的数学基础是什么,并且如果没有辩论的数学基础(这是维基百科所声称的),我也不明白为什么在容忍中全部在学术话语中。


10
统计中的过时做法有哪些例子?
我指的是仍能保留其存在的做法,即使它们旨在解决的问题(通常是计算性问题)已基本解决。 例如,发明了Yates的连续性校正可以近似于测试的Fisher精确测试,但是由于软件现在甚至可以处理大量样本,也可以处理Fisher的测试,因此不再实用(我知道这可能不是“保持其存在”,因为像Agresti的“ 分类数据分析 ”这样的教科书经常承认“不再需要Yates的修正”)。χ2χ2\chi^2 这种做法还有哪些其他示例?

3
我们如何定义“可重复的研究”?
现在已经提出了几个问题,我一直在想一些事情。整个领域是否朝着着眼于原始数据和相关代码可用性的“可重复性”发展? 总是告诉我,可重复性的核心不一定像我所说的那样具有单击“运行”并获得相同结果的能力。数据和代码方法似乎假定数据是正确的-数据本身没有缺陷(在科学欺诈的情况下,通常证明是错误的)。它还关注目标人群的单个样本,而不是发现在多个独立样本上的可重复性。 那么为什么要强调能够重新运行分析,而不是从头开始重复研究呢? 在下面的评论中提到的文章可在此处获得。


4
为什么较低的p值不能提供更多的证据来证明原值?2011年约翰逊的观点
Johansson(2011)在“ 向不可能的事物致敬:p值,证据和可能性 ”(也与期刊链接)中指出,较低的通常被认为是抵制零值的有力证据。约翰逊(Johansson)暗示,如果他们的统计检验输出值为,那么人们会认为反对零值的证据要比他们的统计检验输出值为更好。Johansson列出了无法将值用作反对null的证据的四个原因:pppppp0.010.010.01ppp0.450.450.45ppp ppp is uniformly distributed under the null hypothesis and can therefore never indicate evidence for the null. ppp is conditioned solely on the null hypothesis and is therefore unsuited to quantify evidence, because evidence is always relative in the sense of being evidence for or against a …

3
基于熵的沙里兹时间悖论贝叶斯后向箭头反驳?
在本文中,才华横溢的研究人员Cosma Shalizi认为,要完全接受一种主观的贝叶斯观点,还必须接受一种非物质的结果,即时间的箭头(由熵流给出)实际上应该向后退。这主要是为了反对ET Jaynes提出和推广的最大熵/完全主观贝叶斯观点。 随着在LessWrong,很多参与方都非常有兴趣在贝叶斯概率理论,并在主观贝叶斯方法作为正式决定理论的基础和垫脚石走向强大的AI 埃利泽·尤多科斯基是一种常见的贡献者那里,我最近在读这篇文章时,我碰到了此评论(在原始帖子的页面上不久之后,还有其他几条很好的评论)。 谁能评论尤德科夫斯基反驳沙里兹的有效性。简而言之,尤德科夫斯基的论点是,推理者更新其信念的物理机制需要工作,因此具有热力学成本,沙利兹正在地毯下扫荡。Yudkowsky在另一条评论中对此辩护说: “如果您从系统外部看一个逻辑上无所不知的完美观察者的观点,那么“熵”的概念就几乎没有意义,“概率”也是如此-您不必使用统计热力学来建模任何东西,您只需使用确定性精确波动方程。” 任何概率论者或统计学家都可以对此发表评论吗?我不太在乎权威人士关于沙利兹或尤德科夫斯基地位的争论,但我真的很想看到尤德科夫斯基的三点观点对沙利兹的文章提出批评的方式的总结。 为了符合FAQ准则并使之成为一个具体可回答的问题,请注意,我要提出一个具体的,逐项的答复,该答复应采用Yudkowsky的三步法论证,并指出在Shalizi文章中这三步法反驳了假设和/或推导,或者,另一方面,指出了在沙利兹的论文中论及尤德科夫斯基论点的地方。 我经常听到吹捧Shalizi的文章是铁定论据,证明无法捍卫成熟的主观贝叶斯主义...但是在阅读了Shalizi文章几次之后,对我来说这似乎是一个玩具论证,永远无法适用观察者与所观察的事物(即所有实际物理学)进行交互。但是Shalizi是一位出色的研究人员,因此我欢迎第二意见,因为我很可能不理解这场辩论的重要内容。


4
如何将新向量投影到PCA空间上?
执行主成分分析(PCA)之后,我想将一个新向量投影到PCA空间上(即在PCA坐标系中找到其坐标)。 我已经使用R计算了R语言的PCA prcomp。现在,我应该可以将向量乘以PCA旋转矩阵。该矩阵中的主要成分应该按行还是按列排列?
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.