1
在多项式时间内求解半定程序
我们知道,可以使用椭圆形方法或像Karmarkar算法那样的内点方法,在多项式时间内精确地求解线性程序(LP)。某些具有超多项式(指数)变量/约束的LP也可以在多项式时间内求解,前提是我们可以为其设计一个多项式时间分离法。 半定程序(SDP)呢?几类SDP可以在多项式时间内准确求解?当无法完全解决SDP时,我们是否总可以设计一个FPTAS / PTAS来解决它?在什么条件下可以做到这一点?如果我们可以为其设计多项式时间分隔预言,是否可以求解具有多项式时间变量/约束的指数形式的SDP? 我们能否有效解决组合优化问题(MAX-CUT,图形着色)中出现的SDP?如果我们只能在因子内求解,那么它对常数因子近似算法(例如Goemans-Williamson MAX-CUT算法的0.878)不会产生影响吗?1+ϵ1+ϵ1+\epsilon 任何对此的良好参考将不胜感激。