为什么在不同样本中均值趋于比中位数更稳定?
安迪·菲尔兹(Andy Fields)等人在使用R发现统计信息的第1.7.2节中列出了均值与中位数的优点,同时指出: ...平均值在不同样本中趋于稳定。 在解释了中位数的许多优点之后,例如 ...中位数不受分布两端的极端得分的影响... 鉴于中位数相对不受极端得分的影响,我认为它在各个样本中都更加稳定。因此,我对作者的主张感到困惑。为了确认我进行了模拟,我生成了1M个随机数,并采样了100个数字1000次,计算了每个样本的均值和中位数,然后计算了这些样本均值和中位数的sd。 nums = rnorm(n = 10**6, mean = 0, sd = 1) hist(nums) length(nums) means=vector(mode = "numeric") medians=vector(mode = "numeric") for (i in 1:10**3) { b = sample(x=nums, 10**2); medians[i]= median(b); means[i]=mean(b) } sd(means) >> [1] 0.0984519 sd(medians) >> [1] 0.1266079 p1 <- hist(means, col=rgb(0, …