从贝叶斯网络到神经网络:如何将多元回归转换为多输出网络
我正在处理贝叶斯层次线性模型,这里是描述它的网络。 ÿYY代表超市中某产品的每日销售额(已观察)。 XXX是已知的回归矩阵,包括价格,促销,星期几,天气,假期。 1小号SS是每种产品的未知潜在库存水平,这会导致最多的问题,并且我认为是二进制变量的向量,每个产品一个,其中表示缺货,因此该产品不可用。 即使在理论上未知,我也通过HMM对每个产品进行了估算,因此可以将其视为X。我只是为了适当的形式主义而决定对它进行着色。1个11 ηη\eta是任何单个产品的混合效果参数,其中考虑的混合效果是产品价格,促销和缺货。 b 1 b 2ββ\beta是固定回归系数的向量,而和是混合效应系数的向量。一组代表品牌,另一组代表风味(这是一个例子,实际上我有很多组,但是为了清楚起见,这里我只报告两个)。b1个b1b_1b2b2b_2 Σ b 1 Σ b 2ΣηΣη\Sigma_{\eta},和是混合效果的超参数。Σb1个Σb1\Sigma_{b_1}Σb2Σb2\Sigma_{b_2} 因为我有计数数据,所以可以说我将每个产品的销售额都视泊松分布在回归变量上的条件而定(即使对于某些产品,线性近似成立,而对于其他产品,零膨胀模型更好)。在这种情况下,我将有一个乘积(这仅适用于那些对贝叶斯模型本身感兴趣的人,如果您发现它不感兴趣或不琐碎,请跳至该问题:)):ÿYY Ση〜我w ^(α0,γ0)Ση∼IW(α0,γ0)\Sigma_{\eta} \sim IW(\alpha_0,\gamma_0) Σb1个〜我w ^(α1个,γ1个)Σb1∼IW(α1,γ1)\Sigma_{b_1} \sim IW(\alpha_1,\gamma_1) α 0,γ 0,α 1,γ 1,α 2,γ 2Σb2〜我w ^(α2,γ2)Σb2∼IW(α2,γ2)\Sigma_{b_2} \sim IW(\alpha_2,\gamma_2),已知。α0,γ0,α1个,γ1个,α2,γ2α0,γ0,α1,γ1,α2,γ2\alpha_0,\gamma_0,\alpha_1,\gamma_1,\alpha_2,\gamma_2 η〜ñ(0,Ση)η∼N(0,Ση)\eta \sim N(\mathbf{0},\Sigma_{\eta}) b1个〜ñ(0,Σb1个)b1∼N(0,Σb1)b_1 \sim N(\mathbf{0},\Sigma_{b_1}) b2〜ñ(0,Σb2)b2∼N(0,Σb2)b_2 \sim N(\mathbf{0},\Sigma_{b_2}) Σ ββ〜ñ(0,Σβ)β∼N(0,Σβ)\beta \sim N(\mathbf{0},\Sigma_{\beta}),已知。ΣβΣβ\Sigma_{\beta} λ吨我Ĵ ķ= …