UMVUE
让(X1,X2,…,Xn)(X1,X2,…,Xn)(X_1,X_2,\ldots,X_n)是从密度的随机样本fθ(x)=θxθ−110<x<1,θ>0fθ(x)=θxθ−110<x<1,θ>0f_{\theta}(x)=\theta x^{\theta-1}\mathbf1_{00 我正在尝试找到θ的UMVUEθ1+θθ1+θ\frac{\theta}{1+\theta}。 (X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)的联合密度为 fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0\begin{align} f_{\theta}(x_1,\cdots,x_n)&=\theta^n\left(\prod_{i=1}^n x_i\right)^{\theta-1}\mathbf1_{00 \end{align} 随着人口的PDF fθfθf_{\theta}属于单参数指数族,这表明,对于一个完整的充分统计量θθ\theta是T(X1,…,Xn)=∑i=1nlnXiT(X1,…,Xn)=∑i=1nlnXiT(X_1,\ldots,X_n)=\sum_{i=1}^n\ln X_i 由于E(X1)=θ1+θE(X1)=θ1+θE(X_1)=\frac{\theta}{1+\theta},首先想到E(X1∣T)E(X1∣T)E(X_1\mid T)将给我θ的UMVUEθ1+θθ1+θ\frac{\theta}{1+\theta}根据Lehmann-Scheffe定理, 1 + θ。不确定是否可以直接找到该条件期望,还是必须找到条件分布 X1∣∑ni=1lnXiX1∣∑i=1nlnXiX_1\mid \sum_{i=1}^n\ln X_i。 另一方面,我考虑了以下方法: 我们有Xi∼i.i.dBeta(θ,1)⟹−2θlnXi∼i.i.dχ22Xi∼i.i.dBeta(θ,1)⟹−2θlnXi∼i.i.dχ22X_i\stackrel{\text{i.i.d}}{\sim}\text{Beta}(\theta,1)\implies -2\theta\ln X_i\stackrel{\text{i.i.d}}{\sim}\chi^2_2,使−2θT∼χ22n−2θT∼χ2n2-2\theta\, T\sim\chi^2_{2n}。 所以,rrr的阶原时刻−2θT−2θT-2\theta\,T大约为零,作为使用卡方PDF计算是E(−2θT)r=2rΓ(n+r)Γ(n),n+r>0E(−2θT)r=2rΓ(n+r)Γ(n),n+r>0E(-2\theta\,T)^r=2^r\frac{\Gamma\left(n+r\right)}{\Gamma\left(n\right)}\qquad ,\,n+r>0 因此,似乎对于rrr不同整数选择,我将获得θθ\theta的不同整数幂的无偏估计量(和UMVUE)。例如,E(−Tn)=1θE(−Tn)=1θE\left(-\frac{T}{n}\right)=\frac{1}{\theta}和E(1−nT)=θE(1−nT)=θE\left(\frac{1-n}{T}\right)=\theta直接给我1的UMVUE1θ1θ\frac{1}{\theta}和θθ\theta。 现在,当θ>1θ>1\theta>1我们有θ1+θ=(1+1θ)−1=1−1θ+1θ2−1θ3+⋯θ1+θ=(1+1θ)−1=1−1θ+1θ2−1θ3+⋯\frac{\theta}{1+\theta}=\left(1+\frac{1}{\theta}\right)^{-1}=1-\frac{1}{\theta}+\frac{1}{\theta^2}-\frac{1}{\theta^3}+\cdots。 我绝对可以得到1的UMVUE1θ,1θ2,1θ31θ,1θ2,1θ3\frac{1}{\theta},\frac{1}{\theta^2},\frac{1}{\theta^3}等。所以结合这些UMVUE是我能得到所需的UMVUEθ1+θθ1+θ\frac{\theta}{1+\theta}。此方法有效吗?还是我应该继续第一种方法?由于UMVUE存在时是唯一的,因此两者都应给我相同的答案。 明确地说,我得到E(1+Tn+T2n(n+1)+T3n(n+1)(n+2)+⋯)=1−1θ+1θ2−1θ3+⋯E(1+Tn+T2n(n+1)+T3n(n+1)(n+2)+⋯)=1−1θ+1θ2−1θ3+⋯E\left(1+\frac{T}{n}+\frac{T^2}{n(n+1)}+\frac{T^3}{n(n+1)(n+2)}+\cdots\right)=1-\frac{1}{\theta}+\frac{1}{\theta^2}-\frac{1}{\theta^3}+\cdots 即,E(∑r=0∞Trn(n+1)...(n+r−1))=θ1+θE(∑r=0∞Trn(n+1)...(n+r−1))=θ1+θE\left(\sum_{r=0}^\infty \frac{T^r}{n(n+1)...(n+r-1)}\right)=\frac{\theta}{1+\theta} 有没有可能是我需要的是UMVUE ∑r=0∞Trn(n+1)...(n+r−1)∑r=0∞Trn(n+1)...(n+r−1)\displaystyle\sum_{r=0}^\infty \frac{T^r}{n(n+1)...(n+r-1)}当θ>1θ>1\theta>1? 为0<θ<10<θ<10<\theta<1,我会得到g(θ)=θ(1+θ+θ2+⋯)g(θ)=θ(1+θ+θ2+⋯)g(\theta)=\theta(1+\theta+\theta^2+\cdots),因此将UMVUE不同。 已经确信的是,在第一种方法的条件期望值不能直接找到,因为E(X1∣∑lnXi=t)=E(X1∣∏Xi=et)E(X1∣∑lnXi=t)=E(X1∣∏Xi=et)E(X_1\mid \sum\ln X_i=t)=E(X_1\mid \prod X_i=e^t),我已经着手寻找条件分布X1∣∏XiX1∣∏XiX_1\mid \prod X_i。为此,我需要(X1,∏Xi)(X1,∏Xi)(X_1,\prod X_i)的联合密度。 我用了变数(X1,⋯,Xn)→(Y1,⋯,Yn)(X1,⋯,Xn)→(Y1,⋯,Yn)(X_1,\cdots,X_n)\to (Y_1,\cdots,Y_n)使得Yi=∏ij=1XjYi=∏j=1iXjY_i=\prod_{j=1}^i X_j所有i=1,2,⋯,ni=1,2,⋯,ni=1,2,\cdots,n。这导致关节支承的(Y1,⋯,Yn)(Y1,⋯,Yn)(Y_1,\cdots,Y_n)是S={(y1,⋯,yn):0<y1<1,0<yj<yj−1 for j=2,3,⋯,n}S={(y1,⋯,yn):0<y1<1,0<yj<yj−1 for …