1
对自相关二进制时间序列建模
对二进制时间序列建模的常用方法是什么?是否有纸质或教科书在其中处理?我认为具有强自相关的二进制过程。类似于从零开始的AR(1)进程的符号。说且 有白噪声。然后,由定义 的二进制时间序列 将显示自相关,我想用以下代码进行说明X0=0X0=0X_0 = 0Xt+1=β1Xt+ϵt,Xt+1=β1Xt+ϵt, X_{t+1} = \beta_1 X_t + \epsilon_t, ϵtϵt\epsilon_t(Yt)t≥0(Yt)t≥0(Y_t)_{t \ge 0}Yt=sign(Xt)Yt=sign(Xt) Y_t = \text{sign}(X_t) set.seed(1) X = rep(0,100) beta = 0.9 sigma = 0.1 for(i in 1:(length(X)-1)){ X[i+1] =beta*X[i] + rnorm(1,sd=sigma) } acf(X) acf(sign(X)) 如果我得到二进制数据并且我所知道的是存在显着的自相关,那么教科书/常用的建模方法是什么?YtYtY_t 我认为,如果使用外部回归变量或季节性假人,我可以进行逻辑回归。但是,纯时间序列方法是什么? 编辑:确切地说,我们假设sign(X)最多可自动关联4个滞后。这将是4阶的马尔可夫模型,我们可以对其进行拟合和预测吗? 编辑2:同时,我偶然发现了时间序列的glms。这些是解释错误的变量,它们是滞后的观察结果和外部回归变量。但是,这似乎是针对泊松和负二项式分布计数完成的。我可以使用泊松分布来估算伯努利斯。我只是想知道是否没有明确的教科书方法。 编辑3:赏金到期...有什么想法吗?