2
统一随机变量作为两个随机变量之和
取自Grimmet和Stirzaker: 证明不可能不是U = X + Y的情况,U=X+YU=X+Y其中UUU在[0,1]上均匀分布,而XXX和YYY是独立且均匀分布的。您不应假定X和Y是连续变量。 一个简单的反证法足够了,其中的情况下XXX,ÿYY假定离散通过认为它总是能够找到一个üuu和ü 'u′u',使得P (û ≤ û + Ù ')≥ P (Ú ≤ Û )P(U≤u+u′)≥P(U≤u)P(U\leq u+u') \geq P(U\leq u)而P (X + ÿ ≤ Ù )= P (X + ý ≤ ü + Ú ')P(X+Y≤u)=P(X+Y≤u+u′)P(X+Y \leq u) = P(X+Y \leq u+u')。 但是,该证明不能扩展到X ,YX,YX,Y绝对连续或奇异连续。提示/评论/评论?