对重复实验进行仿真研究的问题解释了95%的置信区间-我在哪里做错了?
我正在尝试编写R脚本来模拟95%置信区间的重复实验解释。我发现它高估了样本的95%CI中包含某个比例的真实总体值的时间比例。差异不大-大约是96%和95%,但这仍然令我感兴趣。 我的函数samp_n从伯努利分布中随机抽取了一个样本pop_p,然后prop.test()使用连续性校正或更精确地使用来计算95%的置信区间binom.test()。如果真实人口比例pop_p包含在95%CI中,则返回1 。我编写了两个函数,一个使用prop.test(),一个使用binom.test()并具有相似的结果: in_conf_int_normal <- function(pop_p = 0.3, samp_n = 1000, correct = T){ ## uses normal approximation to calculate confidence interval ## returns 1 if the CI contain the pop proportion ## returns 0 otherwise samp <- rbinom(samp_n, 1, pop_p) pt_result <- prop.test(length(which(samp == 1)), samp_n) lb <- pt_result$conf.int[1] …