3
关于稀疏整数线性规划问题的解决方案有哪些了解?
如果我有一组线性约束,其中每个约束最多具有(例如)4个变量(所有非负且具有{0,1}系数,但一个变量可以具有-1系数),那么该解的已知信息空间?我不太关心有效的解决方案(尽管请指出是否已知),而不是知道目标函数的最小值取决于变量数量和约束数量以及每个变量数量的函数。约束。 更具体地说,该程序类似于 最小化吨 受到 对于所有的i,X_I是正整数 X1 + X2 + X3 -吨<0 X1 + X4 + X5 -吨<0 ... X3 + 5233 -吨≥0 X1 + X2 + X7 -吨≥0 ... 如果需要一个具体的问题,那么最小解是否服从t <= O(max {变量的数量,约束的数量}),而O()中的常数取决于稀疏性?但是,即使答案是否定的,我也更想知道要研究哪种教科书或论文来讨论此类问题,并且是否有专门研究此类问题的领域,但我只是不知道要搜索的字词。谢谢。 更新:经过进一步的思考(并通过将3SAT简化为ILP(使用具有三个变量的约束)进行思考),我意识到系数的问题非常关键(如果要有一个有效的算法)。更准确地说,所有x_i变量具有0或1个系数(在任何一个约束中最多具有三个1个系数),所有t变量具有-1系数,并且所有比较的变量都在左侧,变量在0右侧。我更新了上面的示例以进行澄清。