6
CNN中本地响应规范化的重要性
我发现Imagenet和其他大型CNN利用了本地响应规范化层。但是,我找不到关于它们的太多信息。它们有多重要,何时应使用? 来自http://caffe.berkeleyvision.org/tutorial/layers.html#data-layers: “局部响应归一化层通过对局部输入区域进行归一化来执行一种“横向抑制”。在ACROSS_CHANNELS模式下,局部区域跨越附近的通道延伸,但是没有空间范围(即,它们的形状为local_size x 1 x 1)在WITHIN_CHANNEL模式下,局部区域在空间上延伸,但位于单独的通道中(即,它们的形状为1 x local_size x local_size)每个输入值除以(1+(α/ n)∑ix2i)β,其中n是每个局部区域的大小,总和取自以该值为中心的区域(必要时添加零填充)。” 编辑: 这些种类的层似乎影响最小,不再使用。基本上,它们的作用已被其他正则化技术(例如,辍学和批处理归一化),更好的初始化和训练方法所取代。请参阅下面的我的答案以获取更多详细信息。