1
是MLE
假设(X,Y)(X,Y)(X,Y)具有pdf Fθ(x ,y)= e- (X / θ + θ ÿ)1个x > 0 ,y> 0,θ > 0fθ(x,y)=e−(x/θ+θy)1x>0,y>0,θ>0f_{\theta}(x,y)=e^{-(x/\theta+\theta y)}\mathbf1_{x>0,y>0}\quad,\,\theta>0 样品的密度(X,Y)= (X一世,Y一世)1个≤ 我≤ Ñ(X,Y)=(Xi,Yi)1≤i≤n(\mathbf X,\mathbf Y)=(X_i,Y_i)_{1\le i\le n}从这一人群得出因此是 Gθ(x,y)= ∏我= 1ñFθ(x一世,ÿ一世)= 经验[ - Σ我= 1ñ(x一世θ+ θ ÿ一世) ] 1X1个,… ,xñ,ÿ1个,… ,yñ> 0= 经验[ − n x¯θ- θ Ñ ÿ¯] 1X(1 ),ÿ(1 )> 0,θ …