3
内曼·皮尔森引理
我 从Mood,Graybill和Boes 撰写的《统计理论概论》一书中 阅读了Neyman–Pearson引理。但是我还不了解引理。 谁能用简单的话向我解释这个引理?它说明了什么? Neyman-Pearson Lemma:令是的随机样本,其中是两个已知值和,并且固定。X1,…,XnX1,…,XnX_1,\ldots,X_nf(x;θ)f(x;θ)f(x;\theta)θθ\thetaθ0θ0\theta_0θ1θ1\theta_10<α<10<α<10<\alpha<1 让 k∗k∗k^*是正的常数和C∗C∗C^*是的一个子集XX\mathscr X满足:Pθ0[(X1,…,Xn)∈C∗]=α(1)(1)Pθ0[(X1,…,Xn)∈C∗]=α \tag 1 P_{\theta_0}[(X_1,\ldots,X_n)\in C^*] = \alpha λ=L(θ0;x1,…,xn)L(θ1;x1,…,xn)=L0L1≤k∗if (x1,…,xn)∈C∗(2)(2)λ=L(θ0;x1,…,xn)L(θ1;x1,…,xn)=L0L1≤k∗if (x1,…,xn)∈C∗\tag 2 \lambda=\frac{L(\theta_0;x_1,\ldots,x_n)}{L(\theta_1;x_1,\ldots,x_n)} = \frac{L_0}{L_1} \le k^*\quad \text{if } (x_1,\ldots,x_n)\in C^* andλ≥k∗ if (x1,…,xn)∈C¯∗andλ≥k∗ if (x1,…,xn)∈C¯∗\text{and}\quad \lambda\ge\quad k^* \text{ if } (x_1,\ldots,x_n)\in \bar C^* 然后将试验γ∗γ∗\gamma^*对应于临界区域C∗C∗C^*是一个最有力的尺寸的测试αα\alpha的H0:θ=θ0H0:θ=θ0\mathscr H_0:\theta=\theta_0与H1:θ=θ1H1:θ=θ1\mathscr H_1:\theta=\theta_1 用言语表达,我了解到这两个标准 (1)P [拒绝零假设| 原假设为真] =显着性水平 …