减少到TSP的连续优化问题
假设我在平面上得到了一组有限的点,并要求通过绘制两次可微分的曲线,以使其周长尽可能小。假设和,我可以将这个问题形式化为:p1,p2,..pnp1,p2,..pnp_1,p_2,..p_nC(P)C(P)C(P)pipip_ipi=(xi,yi)pi=(xi,yi)p_i=(x_i,y_i)xi<xi+1xi<xi+1x_i<x_{i+1} 问题1(根据Suresh的评论进行编辑)确定 参数函数,使得弧长 最小化,其中,对于所有,我们有。C2C2C^2x(t),y(t)x(t),y(t)x(t),y(t)tttL=∫[t∈0,1]x′2+y′2−−−−−−−√dtL=∫[t∈0,1]x′2+y′2dt L = \int_{[t \in 0,1]} \sqrt{x'^2+y'^2}dtx(0)=x1,x(1)=xnx(0)=x1,x(1)=xnx(0) = x_1, x(1) = x_nti:x(ti)=xiti:x(ti)=xit_i: x(t_i) = x_iy(ti)=yi)y(ti)=yi)y(t_i)=y_i) 我如何证明(或反驳)问题1是NP问题? 为什么我怀疑NP硬度 假设假设是宽松的。显然,最小弧长的功能是的Traveling Salesman旅行。也许约束只会使问题变得更加困难?p 我Ç 2C2C2C^2pipip_iC2C2C^2 上下文在MSE上发布了此问题的变体。在那里和MO都没有得到答案。考虑到解决问题并非易事,我想确定问题的难度。