如何解释TBATS模型结果和模型诊断
我有一个半小时的需求数据,这是一个多个季节的时间序列。我在R的package中使用tbats过forecast,并得到如下结果: TBATS(1, {5,4}, 0.838, {<48,6>, <336,6>, <17520,5>}) 这是否意味着该序列不一定要使用Box-Cox变换,并且误差项是ARMA(5,4),而6、6和5项则用来解释季节性?阻尼参数0.8383表示什么,也用于转换吗? 以下是模型的分解图: 我想知道该怎么做level并slope讲述该模型。“坡度”告诉趋势,那又如何level呢?如何获得更清晰的情节session 1和session 2,它们分别是每天和每周的季节性。 tbats除了RMSE值,我还知道如何进行模型诊断以评估模型。正常方法是检查错误是否为白噪声,但此处的错误应该是ARMA系列的。我绘制了错误的'acf'和'pacf',但我认为它看起来不像ARMA(5,4)。这是否意味着我的模型不好? acf(resid(model1),lag.max = 1000) pacf(resid(model1),lag.max=1000) 最后一个问题RMSE是通过使用拟合值和真实值来计算的。如果我使用预测值fc1.week$mean和真实值来评估模型RMSE怎么办,它仍被称为?或者,还有这个名字吗? fc1.week <-forecast(model1,h=48*7) fc1.week.demand<-fc1.week$mean