12
为什么95%的置信区间(CI)并不意味着95%的机会包含平均值?
似乎在这里通过各种相关问题,我们达成共识,即所谓的“ 95%置信区间”中的“ 95%”部分是指这样的事实:如果我们要多次精确地重复采样和CI计算过程, ,因此计算得出的95%的配置项将包含总体平均值。这也似乎是共识,这一定义确实不允许人们从单个95%CI得出结论,即平均值有95%的概率落在CI内。但是,我不理解前者在暗示许多95%的配置项包含总体均值的情况下并不暗示后者,就我们的不确定性而言(关于我们实际计算的配置项是否包含总体)是不是)强迫我们使用想象中的案例的基准利率(95%)作为我们对实际案例包含CI的概率的估计? 我见过一些文章按照“实际计算的CI包含总体均值或不包含总体均值,因此其概率为1或0”的论点进行争论,但这似乎暗示了对概率依赖性的奇怪定义在未知状态下(例如,一个朋友扔公平的硬币,隐藏结果,我被禁止说有50%的可能性是正面的)。 我当然错了,但是我看不出逻辑哪里出错了...