Questions tagged «anova»

ANOVA代表AAnalysis Of VAriance,这是一种统计模型和一组用于比较多个组均值的程序。ANOVA模型中的自变量是分类的,但是ANOVA表也可以用于测试连续变量。

2
对于R中的重复测量方差分析,为什么lme和aov返回不同的结果?
我正在尝试从使用ez软件包过渡到lme重复测量方差分析(因为我希望能够在上使用自定义对比lme)。 遵循此博客文章的建议,我能够同时使用和设置相同的模型aov(ez当需要时也是如此)lme。然而,尽管在给出的例子中那个帖子的˚F -值不完美之间同意aov和lme(我检查,他们这样做),这是不是我的数据的情况。尽管F值相似,但它们并不相同。 aov返回1.3399的f值,lme返回1.36264。我愿意接受aov结果为“正确” 的结果,因为这也是SPSS返回的结果(这对我的字段/主管很重要)。 问题: 如果有人能解释为什么存在这种差异以及如何使用我lme来提供可靠的结果,那就太好了。(如果它给出“正确的”结果,我也愿意使用lmer而不是lme用于这种类型的东西。但是,到目前为止,我还没有使用它。) 解决此问题后,我想进行对比分析。尤其是我对合并因子的前两个级别(即c("MP", "MT"))并将其与因子的第三个级别(即)进行对比的兴趣"AC"。此外,测试因子的第三级与第四级(即"AC"vs "DA")。 数据: tau.base <- structure(list(id = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, …


2
将固定效果嵌套在一个随机效果中是否有意义,或者如何用R(aov和lmer)编码重复的度量?
我一直在通过@conjugateprior浏览lm / lmer R公式的概述,并被以下条目弄糊涂了: 现在假设A是随机的,但B是固定的,并且B嵌套在A内。 aov(Y ~ B + Error(A/B), data=d) 下面lmer(Y ~ B + (1 | A:B), data=d) 为相同情况提供了类似的混合模型公式。 我不太明白这是什么意思。在将受试者分为几组的实验中,我们将在固定因子(组)中嵌套一个随机因子(对象)。但是,如何将固定因子嵌套在随机因子中呢?有固定的嵌套在随机主题内的东西吗?可能吗 如果不可能,那么这些R公式有意义吗? 提到该概述部分基于个性项目的页面,该页面基于R中的重复度量的本教程,而该页面本身基于R进行ANOVA。以下是重复测量方差分析的示例: aov(Recall ~ Valence + Error(Subject/Valence), data.ex3) 在这里,向受试者显示不同价的单词(三个级别的因子),并测量其回忆时间。每个主题都有三个价位的单词。我没有看到此设计中嵌套的任何内容(按照此处的最佳答案,它看起来像是交叉的),因此在这种情况下,我会天真的认为Error(Subject)或(1 | Subject)应该使用适当的随机术语。在Subject/Valence“筑巢”(?)是混淆。 请注意,我确实知道这Valence是一个内部因素。但我认为这不是科目中的“嵌套”因素(因为所有科目都经历的所有三个级别Valence)。 更新。我正在探索有关在R中编码重复测量方差分析的CV问题。 在此,以下内容用于固定的内部/重复测量值A和随机值subject: summary(aov(Y ~ A + Error(subject/A), data = d)) anova(lme(Y ~ A, random = ~1|subject, data …


5
我可以信任非正态分布DV的ANOVA结果吗?
我用重复测量方差分析分析了一个实验。方差分析是3x2x2x2x3,其中2个对象间因子,3个以内(N = 189)。错误率是因变量。错误率分布的偏斜为3.64,峰度为15.75。偏斜和峰度是90%的错误率表示为0的结果。在这里阅读一些以前的有关正常性测试的线程会使我有些困惑。我认为,如果您拥有的数据不是正态分布的,则尽可能对它进行最佳转换,但是似乎很多人认为使用ANOVA或T检验分析非正态数据是可以接受的。我可以相信方差分析的结果吗? (仅供参考,将来我打算使用二项分布的混合模型在R中分析此类数据)

1
常用统计检验为线性模型
(更新:我对此进行了更深入的研究,并将结果发布在此处) 命名统计测试的列表非常庞大。许多常见检验依赖于简单线性模型的推论,例如,单样本t检验只是y =β+ε,它是针对零模型y =μ+ε进行检验的,即β=μ,其中μ为零值-通常为μ= 0。 我发现这对教学目的比死记硬背地学习命名模型,何时使用它们以及它们的假设好像它们之间没有任何关系相比更具启发性。这种方法促进并不能增进理解。但是,我找不到一个很好的资源来收集这些信息。我对基本模型之间的等效性感兴趣,而不是对它们的推断方法感兴趣。尽管据我所知,所有这些线性模型的似然比检验得出的结果与“经典”推论相同。 下面是我已经了解迄今为止等价,忽略误差项ε∼N(0,σ2)ε∼N(0,σ2)\varepsilon \sim \mathcal N(0, \sigma^2),并假设所有零假设是的效果由于缺少: 单样本t检验: y=β0H0:β0=0y=β0H0:β0=0y = \beta_0 \qquad \mathcal{H}_0: \beta_0 = 0。 配对样本t检验: y2−y1=β0H0:β0=0y2−y1=β0H0:β0=0y_2-y_1 = \beta_0 \qquad \mathcal{H}_0: \beta_0 = 0 这与成对差异的一样本t检验相同。 两样本t检验: y=β1∗xi+β0H0:β1=0y=β1∗xi+β0H0:β1=0y = \beta_1 * x_i + \beta_0 \qquad \mathcal{H}_0: \beta_1 = 0 其中x是指标(0或1)。 Pearson相关: y=β1∗x+β0H0:β1=0y=β1∗x+β0H0:β1=0y = \beta_1 * x …

4
Fisher的LSD是否像他们所说的那样糟糕?
当我们在两组上进行实验(小样本量(通常每个治疗组的样本量约为7〜8))时,我们使用t检验来检验差异。但是,当我们执行方差分析(显然用于两个以上的小组)时,我们使用类似Bonferroni(成对比较的LSD /#)或Tukey的方法,并且作为一名学生,我已经被警告远离使用费舍尔最小有效差(LSD)。 现在的问题是,LSD类似于成对t检验(是吗?),因此它唯一不能解释的是我们正在进行多次比较。如果说ANOVA本身很重要,那么当与6个小组打交道时,这有多重要? 换句话说,使用Fisher的LSD是否有科学/统计上的理由?


3
回归与方差分析的差异(R中的aov与lm)
我一直给人的印象是,回归只是方差分析的一种更一般的形式,其结果是相同的。但是,最近,我对同一数据进行了回归和方差分析,结果差异很大。也就是说,在回归模型中,主效应和相互作用都非常显着,而在方差分析中,一个主效应并不显着。我希望这与交互有关,但是我不清楚这两种对相同问题进行建模的方式有何不同。如果重要的话,一个预测器是分类的,另一个是连续的,如下面的模拟所示。 这是一个示例,说明我的数据看起来如何以及正在执行的分析,但是结果中没有相同的p值或影响显着(上面概述了我的实际结果): group<-c(1,1,1,0,0,0) moderator<-c(1,2,3,4,5,6) score<-c(6,3,8,5,7,4) summary(lm(score~group*moderator)) summary(aov(score~group*moderator))
21 r  regression  anova 

4
如何将新向量投影到PCA空间上?
执行主成分分析(PCA)之后,我想将一个新向量投影到PCA空间上(即在PCA坐标系中找到其坐标)。 我已经使用R计算了R语言的PCA prcomp。现在,我应该可以将向量乘以PCA旋转矩阵。该矩阵中的主要成分应该按行还是按列排列?
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

1
可以包含相互作用的双向方差分析的非参数等价情况是什么?
嗨,我正在尝试找到一种双向ANOVA(3x4设计)的非参数等效项,它能够包含交互作用。从我在Zar 1984年的“生物统计学分析”中的阅读可以使用Scheirer,Ray和Hare(1976)中提出的方法来实现,但是,据在线其他帖子推断,该方法不再适用(如果有的话)是)。 有谁知道哪种方法适合这样做,如果是,那么R或Stata中的相应功能是否合适?


2
在双向方差分析中交互作用的零假设是什么?
假设我们有两个因子(A和B),每个因子有两个级别(A1,A2和B1,B2)和一个响应变量(y)。 在执行类型的双向ANOVA时: y~A+B+A*B 我们正在测试三个原假设: 因子A的均值没有差异 因子B的均值没有差异 因子A和B之间没有相互作用 写下后,很容易提出前两个假设(对于1来说是)H0:μA1=μA2H0:μA1=μA2H_0:\; \mu_{A1}=\mu_{A2} 但是假设3应该如何表述呢? 编辑:以及如何将其制定为两个以上级别的情况? 谢谢。

6
了解ANOVA和ANCOVA的好资源?
我正在进行论文实验,并且正在寻找一本有趣的书/网站以正确了解ANOVA和ANCOVA的工作方式。我有很好的数学背景,所以我不一定需要粗俗的解释。 我还想知道如何确定何时使用ANOVA代替ANCOVA。

4
边缘情况下精度和召回率的正确值是多少?
精度定义为: p = true positives / (true positives + false positives) 对不对,作为true positives和false positives做法0,精度接近1? 召回相同的问题: r = true positives / (true positives + false negatives) 我目前正在实施统计测试,需要计算这些值,有时分母为0,我想知道在这种情况下应返回哪个值。 PS:请原谅,不恰当的标签,我想用recall,precision和limit,但我不能创造新的标签呢。
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.