有很多尝试证明或,并且自然地,许多人考虑这个问题,并提出了证明这两个方向的想法。P ≠ N PP = N PP=NP\mathsf{P} = \mathsf{NP} P ≠ N PP≠NP\mathsf{P} \neq \mathsf{NP} 我知道,有些方法已被证明行不通,而且可能还有更多失败的历史。似乎也存在许多无法克服的证明障碍。 我们要避免调查死胡同,那是什么?
许多人似乎相信,但许多人也认为这不可能被证明。这有没有矛盾之处?如果您认为这样的证明是不可能的,那么您还应该认为缺少针对P ≠ N P的合理论据。或者有类似的说法,P ≠ N P不太可能是P ≠ N P,这是因为黎曼假设适用于大数,或者存在距离很小的现有质数的很高的下界。双素猜想?P≠NPP≠NPP\ne NPP≠NPP≠NPP\ne NPP≠NPP≠NPP\ne NP
在可计算性和复杂性理论(可能还有其他领域)中,减少是无处不在的。有很多种类,但是原理保持不变:通过将实例映射到L_1中与解决方案等效的实例,可以证明一个问题至少与其他问题一样困难。本质上,我们表明,如果允许L_1的任何求解器使用归约函数作为预处理器,它也可以求解L_2。L 2 L 2大号1个L1L_1大号2L2L_2大号2L2L_2L 1 L 2大号1个L1L_1大号1个L1L_1大号2L2L_2 这些年来,我已经完成了减少的份额,有些事情困扰着我。尽管每个新的减少都需要(或多或少)创造性的构造,但任务可能会让人感到重复。是否有规范的方法库? 人们可以定期采用哪些技术,模式和技巧来构造归约函数? 这应该成为参考问题。因此,请谨慎给出一般的,有说服力的答案,至少由一个例子说明了这一点,但仍然涵盖了许多情况。谢谢!