4
在多项式时间内可以找到最大的独立集的最大类?
该ISGCI列出了1100类图。对于许多这样的函数,我们知道是否可以在多项式时间内确定独立集。这些有时称为IS简易类。我想编译一个最大的 IS-easy类列表。这些类共同构成了此问题的(已知)易处理性的边界。 由于可以在不影响易处理性的情况下,将无限数量的图添加到任何无限的IS-easy类中,因此有一些限制。让我们将类限制为遗传性的类(在获取归纳子图的情况下封闭,或者等效地,由一组排除的归纳子图定义)。此外,让我们只考虑那些带有简短描述的集合X不含X的族。有可能 是还是易处理的类的无限上升链(如(P,star1,2,k)(P,star1,2,k)(P,\text{star}_{1,2,k})-free和下面由David Eppstein描述的类),但让我们将注意力集中在实际上被证明是IS易用的类上。 这是我所知道的: 完美图 -free(P,star1,2,5)(P,star1,2,5)(P,\text{star}_{1,2,5}) -free(K3,3−e,P5)(K3,3−e,P5)(K_{3,3}-e, P_5) 梅尼尔 几乎二分 无椅子 (无,板球)P5P5P_5 -free(P5,Kn,n)(P5,Kn,n)(P_5,K_{n,n})(对于任何固定的)nnn -free(P5,X82,X83)(P5,X82,X83)(P_5, X_{82}, X_{83}) 是否知道其他此类最大类? 编辑:另请参阅Yaroslav Bulatov提出的与排除的未成年人定义的类有关的相关问题,对于未成年人的图有什么方便呢?并查看世袭阶层的整体属性?对于一个更一般的问题,我之前曾问过有关世袭阶级的问题。 正如Jukka Suomela在评论中指出的那样,未成年人排除案件也很有趣(并且会提出一个有趣的问题),但这不是这里的重点。 为了避免David的示例,最大类也应定义为无X图,其中X中并非每个图都有独立的顶点。 下面的答案中给出的类: 无苹果(由StandaŽivný建议) (无,房子)P5P5P_5(由David Eppstein建议) (爪)-freeK2∪K2∪K_2 \cup(由David Eppstein的建议) 添加了2013-10-09: Martin Vatshelle在回答中提到的Lokshtanov,Vatshelle和Villanger的最新结果取代了一些先前已知的最大类。 尤其是,无是IS易包含的,无P 5,板球,无P 5,K n ,n,无P 5,X 82,X 83,和P 5。,免费)都变得轻松。P5P5P_5P5P5P_5P5P5P_5Kn,nKn,nK_{n,n}P5P5P_5X82X82X_{82}X83X83X_{83}P5P5P_5 这意味着,现在可以将一个禁止的诱导子图最多包含五个顶点的所有遗传图类最终确定为IS-easy或not IS-easy。 不幸的是,证明无图形成IS-easy类的证明似乎不适用于无P 6的图,因此下一个领域是对由单个六顶点图定义的所有遗传图类进行分类。P5P5P_5P6P6P_6 我仍然特别是在IS-易类的形式感兴趣的 -免费为一些集合X的图形与无限多的同构类的,但在那里ÿ不含不IS-容易对任何Ÿ ⊂ …