Questions tagged «change-point»

尝试检测分发​​,流程或功能何时发生更改的方法。

3
对数转换的预测变量和/或响应的解释
我想知道是否仅对因变量(无论是因变量还是自变量)还是仅对自变量进行了对数转换,在解释上是否有所不同。 考虑以下情况 log(DV) = Intercept + B1*IV + Error 我可以将IV解释为百分比增长,但是当我拥有 log(DV) = Intercept + B1*log(IV) + Error 或当我有 DV = Intercept + B1*log(IV) + Error ?
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

1
时态网络中的链路异常检测
我碰到了一篇使用链接异常检测来预测趋势主题的论文,并且发现它非常有趣:该论文是“通过链接异常检测在社交流中发现新兴主题”。 我想将其复制到不同的数据集上,但是我对如何使用它们的方法并不熟悉。假设我有六个月的一系列节点网络快照。节点具有长尾度分布,大多数节点只有几个连接,而有些则有很多。新节点将在此时间段内出现。 我如何实现本文中使用的顺序折算归一化的最大似然计算来检测我认为可能是爆发的先兆的异常链接?还有其他更合适的方法吗? 我在理论上和实践上都在问。如果有人可以指出我用python或R实现该方法的方法,那将非常有帮助。 任何人?我知道你们那里的聪明人有一些开始思考的答案,

5
用于更改点分析的Python模块
我正在寻找一个在时间序列上执行变更点分析的Python模块。有很多不同的算法,我想探索其中一些算法的有效性,而不必手动滚动每种算法。 理想情况下,我需要R中的一些模块,例如bcp(贝叶斯变更点)或strucchange软件包。我希望在Scipy中找到一些模块,但是我无法打开任何东西。 我很惊讶其中没有任何设施: statsmodels.tsa:时间序列统计分析工具 scikits.timeseries:扩展scipy的时间序列分析工具 scipy.signal:scipy中的信号处理工具 Python中是否有带有变更点检测算法的模块?

4
如何将新向量投影到PCA空间上?
执行主成分分析(PCA)之后,我想将一个新向量投影到PCA空间上(即在PCA坐标系中找到其坐标)。 我已经使用R计算了R语言的PCA prcomp。现在,我应该可以将向量乘以PCA旋转矩阵。该矩阵中的主要成分应该按行还是按列排列?
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

5
检测时间序列的变化(R示例)
我想检测通常具有相同形状的时间序列数据的变化。到目前为止,我已经使用changepointR和cpt.mean(), cpt.var()and cpt.meanvar()函数的软件包。cpt.mean()当数据通常保持在一个级别时,使用PELT方法的效果很好。但是,我也想检测下降期间的变化。我要检测的一个变化示例是黑色曲线突然下降而实际上应遵循示例性红色虚线的部分。我已经尝试过cpt.var()函数,但是无法获得良好的结果。您是否有任何建议(不必使用R)? 这是具有更改的数据(作为R对象): dat.change <- c(12.013995263488, 11.8460207231808, 11.2845153487846, 11.7884417180764, 11.6865425802022, 11.4703118125303, 11.4677576899063, 11.0227199625084, 11.274775836817, 11.03073498338, 10.7771805591742, 10.7383206158923, 10.5847230134625, 10.2479315651441, 10.4196381241735, 10.467607842288, 10.3682422713283, 9.7834431752935, 9.76649842404295, 9.78257968297228, 9.87817694914062, 9.3449034905713, 9.56400153361727, 9.78120084558148, 9.3445162813738, 9.36767436354887, 9.12070987223648, 9.21909859069157, 8.85136359917466, 8.8814423003979, 8.61830163359642, 8.44796977628488, 8.06957847272046, 8.37999165387824, 7.98213210294954, 8.21977468333673, 7.683960439316, 7.73213584532496, 7.98956476021092, 7.83036046746187, 7.64496198988985, 4.49693528397253, 6.3459274845112, 5.86993447552116, …

2
使用R的nls()进行变更点分析
我正在尝试实现“变化点”分析或nls()在R中使用的多阶段回归。 这是我制作的一些虚假数据。我想用来拟合数据的公式是: ÿ= β0+ β1个x + β2最大(0 ,X - δ)ÿ=β0+β1个X+β2最大值(0,X-δ)y = \beta_0 + \beta_1x + \beta_2\max(0,x-\delta) 这应该做的是使数据具有特定的截距和斜率(β0β0\beta_0和β1个β1个\beta_1),直到特定点,然后在某个x值(δδ\delta)之后,将斜率增加β2β2\beta_2。这就是整个最大事情。在δδ\delta点之前,它等于0,并且β2β2\beta_2将被清零。 因此,这是我的功能: changePoint <- function(x, b0, slope1, slope2, delta){ b0 + (x*slope1) + (max(0, x-delta) * slope2) } 我尝试以这种方式拟合模型 nls(y ~ changePoint(x, b0, slope1, slope2, delta), data = data, start = c(b0 = 50, …

6
如何检测由于“政策”变更而导致的时间序列数据的重大变更?
我希望这是张贴此文章的正确地点,我考虑过将其张贴在怀疑论者身上,但我认为他们只是说这项研究在统计上是错误的。我对这个问题的另一面感到好奇,那就是如何正确地做到这一点。 作者在网站Quantified Self上发布了一项实验结果,该实验是对一段时间内自己测量的一些输出指标进行比较,并比较了突然停止喝咖啡前后的比较。对结果进行了主观评估,作者认为他有证据表明时间序列有变化,并且与政策的变化有关(饮用咖啡) 这让我想起了经济模型。我们只有一个经济体(目前正在关注),因此经济学家通常基本上在进行n = 1个实验。因此,几乎可以肯定的是,随着时间的推移数据是自相关的。美联储表示,经济学家通常在观察其启动一项政策的过程,并试图确定时间序列是否发生变化,这有可能是由于该政策造成的。 根据数据确定时间序列是增加还是减少的适当测试是什么?我需要多少数据?存在哪些工具?我最初的谷歌搜索建议使用马尔可夫切换时间序列模型,但并不是我的谷歌搜索技能让我无法使用该技术的名称来做任何事情。


4
用R中的随机效应估计折断的棒/分段线性模型中的断点[包括代码和输出]
当我还需要估计其他随机效应时,有人可以告诉我如何让R估计分段线性模型中的断裂点(作为固定或随机参数)吗? 我在下面提供了一个玩具示例,该示例适合曲棍球杆/折断的杆回归,其随机点的斜率变化和y轴截距的随机变化为4的断裂点。我想估算断裂点而不是指定断裂点。它可以是随机效果(最好)或固定效果。 library(lme4) str(sleepstudy) #Basis functions bp = 4 b1 <- function(x, bp) ifelse(x < bp, bp - x, 0) b2 <- function(x, bp) ifelse(x < bp, 0, x - bp) #Mixed effects model with break point = 4 (mod <- lmer(Reaction ~ b1(Days, bp) + b2(Days, bp) + (b1(Days, …

8
如何对多个未知结进行分段线性回归?
是否有任何软件包可以进行分段线性回归,从而可以自动检测多个结?谢谢。当我使用strucchange包时。我无法检测到更改点。我不知道它如何检测更改点。从地块中,我可以看到有一些要点可以帮助我挑选出来。有人可以在这里举个例子吗?

6
如何表征突然的变化?
这个问题可能太基础了。对于数据的时间趋势,我想找出发生“突变”变化的点。例如,在下面显示的第一个图中,我想使用某种统计方法找出更改点。我想在变化点不明显的其他一些数据中使用这种方法(例如第二张图)。


2
检测时间序列的变化
我遇到了一张应用程序原型的图片,该原型发现了交通数据中的重大变化(“趋势”,而不是峰值/离群值): 我想编写一个能够做到这一点的程序(Java,或者可选的R)-但是由于我的统计技能有点生锈,因此我需要再次深入探讨该主题。 因此,我应该使用/研究什么方法/算法?

1
R / mgcv:为什么te()和ti()张量积产生不同的曲面?
的mgcv软件包R具有两个功能,用于拟合张量积相互作用:te()和ti()。我了解两者之间的基本分工(拟合非线性交互与将这种交互分解为主要效果和交互)。我不明白的是为什么te(x1, x2)而ti(x1) + ti(x2) + ti(x1, x2)可能产生(略)不同的结果。 MWE(改编自?ti): require(mgcv) test1 <- function(x,z,sx=0.3,sz=0.4) { x <- x*20 (pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+ 0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2)) } n <- 500 x <- runif(n)/20;z <- runif(n); xs <- seq(0,1,length=30)/20;zs <- seq(0,1,length=30) pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30))) truth <- matrix(test1(pr$x,pr$z),30,30) f <- test1(x,z) y <- f + rnorm(n)*0.2 par(mfrow = c(2,2)) # …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
为什么Anova()和drop1()为GLMM提供了不同的答案?
我有以下形式的GLMM: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) 当我使用时drop1(model, test="Chi"),我得到的结果与Anova(model, type="III")从汽车包装或汽车上获得的结果不同summary(model)。后两个给出相同的答案。 通过使用大量虚构数据,我发现这两种方法通常没有区别。对于平衡线性模型,不平衡线性模型(不同组中的n不相等)和平衡广义线性模型,它们给出相同的答案,但对于平衡广义线性混合模型,它们给出相同的答案。因此看来,只有在包括随机因素的情况下,这种矛盾才会显现出来。 为什么这两种方法之间存在差异? 使用GLMM时应使用Anova()还是drop1()应使用? 至少就我的数据而言,两者之间的差异很小。哪一个使用都重要吗?
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.