两个独立随机变量(正态和卡方)乘积的pdf
如果X和Y是独立的,则两个独立的随机变量X和Y的乘积的pdf是多少?X是正态分布,Y是卡方分布。 Z = XY 如果XXX具有正态分布X∼N(μx,σ2x)X∼N(μx,σx2)X\sim N(\mu_x,\sigma_x^2) fX(x)=1σx2π−−√e−12(x−μxσx)2fX(x)=1σx2πe−12(x−μxσx)2f_X(x)={1\over\sigma_x\sqrt{2\pi}}e^{-{1\over2}({x-\mu_x\over\sigma_x})^2} 和YYY具有卡方分布自由度 whre是单位阶跃函数。kkkY∼χ2kY∼χk2Y\sim \chi_k^2 fY(y)=y(k/2)−1e−y/22k/2Γ(k2)u(y)fY(y)=y(k/2)−1e−y/22k/2Γ(k2)u(y)f_Y(y)={y^{(k/2)-1}e^{-y/2}\over{2^{k/2}\Gamma({k\over2})}}u(y)u(y)u(y)u(y) 现在,如果X和Y独立,则的pdf 是多少?ZZZXXXYYY 找到解决方案的一种方法是使用Rohatgi的著名结果(1976,p.141),如果fXY(x,y)fXY(x,y)f_{XY}(x,y)是连续RV XXX和Y的联合pdf YYY,则Z的pdf ZZZ是 fZ(z)=∫∞−∞1|y|fXY(zy,y)dyfZ(z)=∫−∞∞1|y|fXY(zy,y)dyf_Z(z) = \int_{-\infty}^{\infty}{{1\over|y|}f_{XY}({z\over y},y)dy} 由于和是独立的 我们面临解决积分。谁能帮助我解决这个问题。ÿ ˚F X Ý(X ,ÿ )= ˚F X(X )˚F Ý(Ý )˚F Ž(ż )= ∫ ∞ - ∞ 1XXXYYYfXY(x,y)=fX(x)fY(y)fXY(x,y)=fX(x)fY(y)f_{XY}(x,y)=f_X(x)f_Y(y) fZ(z)=∫∞−∞1|y|fX(zy)fY(y)dyfZ(z)=∫−∞∞1|y|fX(zy)fY(y)dyf_Z(z) = \int_{-\infty}^{\infty}{{1\over|y|}f_{X}({z\over y})f_{Y}(y)dy} ∫∞01fZ(z)=1σx2π−−√12k/2Γ(k2)∫∞01|y|e−12(zy−μxσx)2y(k/2)−1e−y/2dyfZ(z)=1σx2π12k/2Γ(k2)∫0∞1|y|e−12(zy−μxσx)2y(k/2)−1e−y/2dyf_Z(z) = {1\over\sigma_x\sqrt{2\pi}}{1\over{2^{k/2}\Gamma({k\over2})}}\int_{0}^{\infty}{{1\over|y|}e^{-{1\over2}({{z\over y}-\mu_x\over\sigma_x})^2} {y^{(k/2)-1}e^{-y/2}}dy} ∫∞01|y|e−12(zy−μxσx)2y(k/2)−1e−y/2dy∫0∞1|y|e−12(zy−μxσx)2y(k/2)−1e−y/2dy\int_{0}^{\infty}{{1\over|y|}e^{-{1\over2}({{z\over …