2
为什么在达到最佳样本量之前停止A / B测试是错误的?
我负责介绍我公司的A / B测试结果(在网站上运行)。我们进行了一个月的测试,然后定期检查p值,直到达到显着性为止(或者,如果长时间运行后未达到显着性,则放弃),我现在发现这是一种错误的做法。 我现在想停止这种做法,但是要这样做,我想了解为什么这是错误的。我知道效果大小,样本大小(N),α显着性标准(α)和统计功效,或选择或隐含的β(β)在数学上都是相关的。但是,在达到所需样本量之前停止测试会发生什么变化呢? 我在这里阅读了几篇文章(即this,this和this),他们告诉我,我的估计会有所偏差,并且我的Type 1错误的发生率急剧增加。但是那是怎么发生的呢?我正在寻找数学解释,这种解释可以清楚地显示出样本量对结果的影响。我想这与我上面提到的因素之间的关系有关,但是我无法找出确切的公式并自行解决。 例如,过早停止测试会增加类型1的错误率。好的。但为什么?如何增加类型1的错误率?我想念这里的直觉。 请帮忙。