1
在同一个数据集上运行两个线性模型是否可以接受?
对于具有多个组(先验定义的自然组)的线性回归,是否可以在同一数据集上运行两个不同的模型来回答以下两个问题? 每个组是否具有非零的斜率和非零的截距,并且组回归中每个参数的参数是什么? 无论组成员身份如何,是否存在非零趋势和非零截距,并且跨组回归的参数有哪些? 在R中,第一个模型为lm(y ~ group + x:group - 1),因此估计的系数可以直接解释为每个组的截距和斜率lm(y ~ x + 1)。 备选方案将是lm(y ~ x + group + x:group + 1),这将导致复杂的系数汇总表,并且必须根据组中的斜率和截距来计算系数和截距,而斜率和截距必须来自某个参考。另外,您还必须重新排序组并再次运行模型,以获取最后一个组差异的p值(有时)。 这是否使用两个单独的模型以任何方式或这种标准惯例对推理产生了负面影响? 为了说明这一点,将x表示为药物剂量,将各组视为不同的种族。了解特定种族的医生的剂量反应关系可能很有趣,或者根本不知道药物对哪个种族起作用,但是有时了解整个(人类)人群的剂量反应关系也可能很有趣。不管竞选公共卫生官员。这只是一个例子,说明人们可能对组内和组间回归分别感兴趣。剂量反应关系是否应为线性并不重要。