在波塞上学习单调谓词所需的最坏问题数量
考虑的有限偏序超过项,并且在一个未知的单调谓词(即,对于任何,,如果和然后)。我可以通过提供一个节点并确定成立来评估我的目标是使用最少的值来确定确切的节点的集合,从而使成立。(X,≤)(X,≤)(X, \leq)nnnPPPXXXxxxy∈Xy∈Xy \in XP(x)P(x)P(x)x≤yx≤yx \leq yP(y)P(y)P(y)PPPx∈Xx∈Xx \in XP(x)P(x)P(x)x∈Xx∈Xx \in XP(x)P(x)P(x)PPP尽可能。(我可以根据之前所有查询的答案选择查询,而无需提前计划所有查询。) 策略 over是一个函数,该函数根据我到目前为止所进行的查询以及它们的答案,告诉我要查询的节点以及通过遵循该策略来确保在任何谓词上告诉我,我将达到一种状态,在该状态下我知道所有节点上的值。运行时间的上的谓词是需要查询的数量就知道了值所有节点上。的最差运行时间是。最优策略使得。SSS(X,≤)(X,≤)(X, \leq)PPPPPPr(S,P)r(S,P)r(S, P)SSSPPPPPPSSSwr(S)=maxPr(S,P)wr(S)=maxPr(S,P)wr(S) = \max_P r(S, P)S′S′S'wr(S′)=minSwr(S)wr(S′)=minSwr(S)wr(S') = \min_S wr(S) 我的问题如下:作为输入的poset (X,≤)(X,≤)(X, \leq),如何确定最佳策略的最差运行时间? [很明显,对于一个空的poset,将需要nnn查询(我们需要询问每个单个节点),并且对于\ lceil \ log_2 n个\ rceil的总顺序⌈log2n⌉⌈log2n⌉\lceil \log_2 n \rceil将是必需的(进行二进制搜索以查找边境)。一个更一般的结果是以下信息理论下限:谓词P的可能选择PPP数是(X,\ leq)的反链数N_X(因为单调谓词与A之间的一对一映射)反链解释为P的最大元素,因此,由于每个查询给我们提供了一点信息,因此我们至少需要\ lceil \ log_2 N_X \ rceilNXNXN_X(X,≤)(X,≤)(X, \leq)PPP⌈log2NX⌉⌈log2NX⌉\lceil \log_2 N_X \rceil查询,并包含前两种情况。是束缚很紧吗,还是它们是一些结构使得学习可能比反链数量渐近地需要更多查询的姿势?]