图同构问题是否存在间隙扩增类型的结果?
假设和是顶点集上的两个无向图。当且仅当存在一个置换使得或更正式时,如果存在一个置换使得是的边,则图是同构的如果是的边。图同构问题是确定两个给定图是否同构的问题。G1G1G_1G2G2G_2{1,…,n}{1,…,n}\{1, \dotsc, n\}ΠΠ\PiG1=Π(G2)G1=Π(G2)G_1 = \Pi(G_2)ΠΠ\Pi(i,j)(i,j)(i,j)G1G1G_1(Π(i),Π(j))(Π(i),Π(j))(\Pi(i),\Pi(j))G2G2G_2 在图上是否存在以Dinur证明PCP定理的样式产生“间隙放大”的运算?换句话说,是否存在从到的多项式时间可计算转换,使得(G1,G2)(G1,G2)(G_1,G_2)(G′1,G′2)(G1′,G2′)(G'_1,G'_2) 如果和是同构的,则和也同构,并且G1G1G_1G2G2G_2G′1G1′G'_1G′2G2′G'_2 如果和不同构,则对于每个排列,图形是“ -far”从对于一些小的常数,其中 -far意味着,如果我们随机地均匀选择,然后以概率G1G1G_1G2G2G_2ΠΠ\PiG′1G1′G'_1ϵϵ\epsilonΠ(G′2)Π(G2′)\Pi(G'_2)ϵϵ\epsilonϵϵ\epsilon(i,j)(i,j)(i,j)ϵϵ\epsilon要么 是的边缘 ģ ' 1和(Π (我),Π (Ĵ ))不是一个边缘 ģ ' 2,或(i,j)(i,j)(i,j)G′1G1′G'_1(Π(i),Π(j))(Π(i),Π(j))(\Pi(i),\Pi(j))G′2G2′G'_2 (i,j)(i,j)(i,j)不是的边缘,而是的边缘。G′1G1′G'_1(Π(i),Π(j))(Π(i),Π(j))(\Pi(i),\Pi(j))G′2G2′G'_2