1
系数路径–岭,套索和弹性净回归的比较
我想比较使用脊线,套索和弹性网选择的模型。下图显示了使用所有三种方法的系数路径:山脊(图A,alpha = 0),套索(图B; alpha = 1)和弹性网(图C; alpha = 0.5)。最佳解决方案取决于所选的lambda值,该值是基于交叉验证选择的。 查看这些图时,我希望弹性网(图C)表现出分组效应。然而,目前情况尚不清楚。套索和弹性网的系数路径非常相似。这可能是什么原因?这仅仅是编码错误吗?我在R中使用了以下代码: library(glmnet) X<- as.matrix(mydata[,2:22]) Y<- mydata[,23] par(mfrow=c(1,3)) ans1<-cv.glmnet(X, Y, alpha=0) # ridge plot(ans1$glmnet.fit, "lambda", label=FALSE) text (6, 0.4, "A", cex=1.8, font=1) ans2<-cv.glmnet(X, Y, alpha=1) # lasso plot(ans2$glmnet.fit, "lambda", label=FALSE) text (-0.8, 0.48, "B", cex=1.8, font=1) ans3<-cv.glmnet(X, Y, alpha=0.5) # elastic net …