1
对数正态随机变量的相关性
给定和具有相关系数正常随机变量,我如何找到以下对数正态随机变量和之间的相关性?X 2 ρ ý 1 ÿ 2X1X1X_1X2X2X_2ρρ\rhoY1Y1Y_1Y2Y2Y_2 Y1=a1exp(μ1T+T−−√X1)Y1=a1exp(μ1T+TX1)Y_1 = a_1 \exp(\mu_1 T + \sqrt{T}X_1) Y2=a2exp(μ2T+T−−√X2)Y2=a2exp(μ2T+TX2)Y_2 = a_2 \exp(\mu_2 T + \sqrt{T}X_2) 现在,如果X1=σ1Z1X1=σ1Z1X_1 = \sigma_1 Z_1和X2=σ1Z2X2=σ1Z2X_2 = \sigma_1 Z_2,其中Z1Z1Z_1和Z2Z2Z_2是标准法线,则从线性变换属性中,我们得到: Y1=a1exp(μ1T+T−−√σ1Z1)Y1=a1exp(μ1T+Tσ1Z1)Y_1 = a_1 \exp(\mu_1 T + \sqrt{T}\sigma_1 Z_1) Y2=a2exp(μ2T+T−−√σ2(ρZ1+1−ρ2−−−−−√Z2)Y2=a2exp(μ2T+Tσ2(ρZ1+1−ρ2Z2)Y_2 = a_2 \exp(\mu_2 T + \sqrt{T}\sigma_2 (\rho Z_1 + \sqrt{1-\rho^2}Z_2) 现在,如何从此处计算Y1Y1Y_1和Y_2之间的相关性Y2Y2Y_2?