3
梅林可以说服亚瑟多少钱吗?
梅林,谁拥有无限的计算资源,希望说服亚瑟 m|∑p≤N, p primepkm|∑p≤N, p primepkm|\sum_{p\le N,\ p\text{ prime}}p^k 为(N,m,k)(N,m,k)(N,m,k)与k=O(logN)k=O(logN)k=O(\log N)和m=O(N).m=O(N).m=O(N). 以直接方式(模取幂和加法)计算此总和需要时间N(loglogN)2+o(1)N(loglogN)2+o(1)N(\log\log N)^{2+o(1)}基于FFT的乘法。*但是Arthur只能执行O(N)O(N)O(N)运算。 (符号,与早期版本的这个问题的兼容性:让总和等于mαmαm\alpha ;然后,问题是是否αα\alpha是整数。) 梅林可以用长度为的字符串说服亚瑟O(N)O(N)O(N)吗?如果不是,他是否可以用交互式证明说服亚瑟(总交流,当然必须是O(N)O(N)O(N))?如果是这样,Merlin可以使用长度为的字符串o(N)o(N)o(N)吗?亚瑟可以利用o(N)o(N)o(N)时间吗? Arthur无法使用不确定性或其他特殊工具(量子方法,Merlin以外的Oracle等),但是如果需要,可以使用O(N)O(N)O(N)空间。当然,亚瑟不必直接计算总和,他只需要确信给定的三元组(N,m,k)会使方程为真或为假。 注意,与k=0k=0k=0它可以计算在时间的总和O(N1/2+ε)O(N1/2+ε)O(N^{1/2+\varepsilon})使用Lagarias-奥德里兹科方法。对于k>0k>0k>0该和是超线性的,因此无法直接存储(没有(例如,模块归约)),但是尚不清楚是否存在快速算法。 除了通过直接加电和加法运算之外,我还将对计算总和(模数或其他形式)的任何算法感兴趣。 * 要计算的数字,每次计算的时间为lg k log N (log log N )1 + o (1 ) = log N (log log N )2 + o (1 )。N/logNN/logNN/\log NlgklogN(loglogN)1+o(1)=logN(loglogN)2+o(1)lgklogN(loglogN)1+o(1)=logN(loglogN)2+o(1)\lg k\log N(\log\log N)^{1+o(1)}=\log N(\log\log N)^{2+o(1)}