多项式(1 / n,…,1 / n)可以表征为离散Dirichlet(1,..,1)吗?
所以这个问题有点混乱,但是我将提供彩色图表来弥补这一点!首先是背景,然后是问题。 背景 假设您有维多项式分布,并且在类别上的Probailites相等。令是该分布的归一化计数(),即:nnnnnnπ=(π1,…,πn)π=(π1,…,πn)\pi = (\pi_1, \ldots, \pi_n)ccc (c1,…,cn)∼Multinomial(1/n,…,1/n)πi=cin(c1,…,cn)∼Multinomial(1/n,…,1/n)πi=cin(c_1, \ldots, c_n) \sim \text{Multinomial}(1/n, \ldots, 1/n) \\ \pi_i = {c_i \over n} 现在上的分布已支持n -simplex,但具有离散步骤。例如,对于n = 3,此分布具有以下支持(红点):ππ\pinnnn=3n=3n = 3 具有类似支持的另一个分布是维分布,即单位单纯形上的均匀分布。例如,这是一个3维 1,1,1)的随机抽奖:狄利克雷(1 ,... ,1 )狄利克雷(1 ,1 ,1 )nnnDirichlet(1,…,1)Dirichlet(1,…,1)\text{Dirichlet}(1, \ldots, 1)Dirichlet(1,1,1)Dirichlet(1,1,1)\text{Dirichlet}(1, 1, 1) 现在我有了一个想法,即分布中的分布可以被描述为来自离散化为的离散支持。我想到的离散化(似乎很好用)是将单纯形中的每个点取整并“舍入”到支持的最接近点。对于3维单纯形,您将获得以下分区,其中每个有色区域中的点应“舍入”到最接近的红点:ππ\piMultinomial(1/n,…,1/n)Multinomial(1/n,…,1/n)\text{Multinomial}(1/n, \ldots, 1/n)Dirichlet(1,…,1)Dirichlet(1,…,1)\text{Dirichlet}(1, \ldots, 1)ππ\piππ\pi 由于狄利克雷分布是均匀的,因此每个点的最终密度/概率与“四舍五入”到每个点的面积/体积成比例。对于二维和三维情况,这些概率为: (这些概率来自蒙特卡洛模拟) 这样看来,至少对于2维和3维,以这种特殊方式离散化所得到的概率分布与的概率分布相同。那就是分布的标准化结果。我也尝试过使用4维,并且似乎可以使用。Dirichlet(1,…,1)Dirichlet(1,…,1)\text{Dirichlet}(1, \ldots, 1)ππ\piMultinomial(1/n,…,1/n)Multinomial(1/n,…,1/n)\text{Multinomial}(1/n, \ldots, 1/n) …