6
在准多项式时间内有一个自然的问题,但在多项式时间内没有吗?
LászlóBabai最近证明 了图同构问题是在拟多项式时间内。又见他的 谈话在芝加哥大学, 音符由杰里米·昆会谈 GLL后1, GLL后2, GLL后3。 根据拉德纳定理,如果P≠NPP≠NPP \neq NP,则NPINPINPI不为空,即NPNPNP包含PPP或 -complete 都不存在的问题。但是,Ladner构建的语言是人为的,不是自然问题。 即使有条件地在下,也没有自然问题出现在。但是一些问题被认为是良好候选者,例如分解整数和GI。NPNPNPNPINPINPIP≠NPP≠NPP \neq NPNPINPINPI 我们可能会认为,根据Babai的结果,可能会有针对GI的多项式时间算法。许多专家认为NP⊈QP=DTIME(npolylogn)NP⊈QP=DTIME(npolylogn)NP \not\subseteq QP = DTIME(n^{poly\log n})。 对于某些问题,我们知道准多项式时间算法,但是没有多项式时间算法是已知的。这些问题出现在近似算法中。一个著名的例子是有向Steiner树问题,针对该问题,存在一种准多项式时间逼近算法,该算法实现了的逼近比 (是顶点数)。但是,显示这种多项式时间算法的存在是一个未解决的问题。O(log3n)O(log3n)O(\log^3 n)nnn 我的问题: 我们知道中有任何自然问题,但没有吗?QPQPQPPPP