理论计算机科学

理论计算机科学家和相关领域的研究人员的问答

1
自然定理仅被证明“具有很高的可能性”?
在很多情况下,随机的“证明”比确定性证明容易得多,典型的例子是多项式身份测试。 问题:是否存在已知随机证明但不确定性证明的自然数学“定理”? 通过陈述的“随机证明”,我的意思是PPP 有一个随机算法,输入,如果为假,则产生确定性证明,概率至少为。P ¬ P 1 - 2 - Ñn>0n>0n > 0PPP¬P¬P\neg P1−2−n1−2−n1-2^{-n} 有人已经针对运行了该算法,并且没有反驳该定理。n=100n=100n = 100 生成适合的非自然语句很容易:只要选择仅知道高效随机算法的任何问题的大型实例即可。但是,尽管有很多带有“大量数字证据”的数学定理,例如黎曼假设,但我不知道有任何具有上述形式的严格随机证据的定理。

1
具有对数深度的集团宽度表达式
当给出宽度为w的图的树分解时,有几种方法可以使它“很好”。特别地,已知可以将其转换成树分解,其中树是二叉树并且树的高度是O (log n )。这可以在保持分解宽度最大为3 w的同时实现。(例如,参见Bodlaender和Hagerup撰写的“有界树宽的最佳加速并行算法”)。因此,对数深度是树分解的属性,我们几乎可以免费获得。GGGwwwO (对数n )Ø(日志⁡ñ)O(\log n)3 瓦3w3w 我的问题是,对于集团宽度是否存在类似的结果,或者可能是反例。换句话说,给定一个集团宽度表达为使用ķ标签,确实始终存在着高度的集团宽度表达Ö (日志Ñ )为GGGķķkO (对数n )Ø(日志⁡ñ)O(\log n),即至多用途 ˚F (ķ )标签?在此,高度自然定义为集团宽度表达式的分析树的高度。GGGF(k )F(ķ)f(k) 如果不知道与上述类似的语句,则有一个示例,该示例具有小集团宽度k的顶点图G,这样构造带有f (k )标签的G的唯一方法是使用具有深度?ññnGGGķķkGGGF(k )F(ķ)f(k)


2
图灵机会识别每种递归语言吗?
我们说,如果对于每种初始配置停止,则图灵机必定是致命的(特别是磁带内容和初始状态可以是任意的)。凡人图灵机都能识别每种递归语言吗?(即,如果有一个接受的TM,那么也有一个凡人接受 TM )M L LMMMMMMLLLLLL


1
线性系统可行性检查和优化的等效项
一种证明不等式线性系统的可行性与线性规划一样困难的方法是通过椭圆法给出的简化。一种更简单的方法是猜测最佳解决方案,并将其作为约束通过二进制搜索引入。 这两种减少都是多项式,但不是强多项式(即,它们取决于不等式系数中的位数)。 从LP优化到LP可行性是否有很多项式的简化?


2
次指数时间的近似值
对多项式时间中NP完全问题的近似算法和指数时间中的精确算法进行了研究。有没有关于形式的子指数时间近似算法NP完全问题研究2nδ22nδ22^{n^{\delta_2}},其中?δ2∈(0,1)δ2∈(0,1)\delta_2\in(0,1) 我对难于多项式时间的近似问题(例如次指数时间内的独立数和集团数)的已知情况特别感兴趣?注意,ETH仅禁止在这样的时间范围内进行精确计算。假设在某个顶点数为对于一些独立数是。对于时间是否可能有因子近似方案其中和是一些固定的正实数?α(G)=2r(n)nα(G)=2r(n)n\alpha(G)=2^{r(n)n}|V|=2s(n)n|V|=2s(n)n|V|=2^{s(n)n}0&lt;r(n)&lt;s(n)0&lt;r(n)&lt;s(n)0<r(n)<s(n)2(r(n)n)δ12(r(n)n)δ12^{(r(n)n)^{\delta_1}}2|V|δ2=22δ2s(n)n2|V|δ2=22δ2s(n)n2^{|V|^{\delta_2}}=2^{2^{\delta_2s(n) n}}0&lt;δ1&lt;10&lt;δ1&lt;10<\delta_1<10&lt;δ2&lt;10&lt;δ2&lt;10<\delta_2<1 也就是说,每个都有一个这样可以在δ1∈(0,1)δ1∈(0,1)\delta_1\in(0,1)δ2∈(0,1)δ2∈(0,1)\delta_2\in (0,1)α(G)α(G)\alpha(G)因子在时间 2 | V | δ 2 = 2 2 δ 2小号(Ñ )ñ?2logδ12(α(G))=2(r(n)n)δ12log2δ1⁡(α(G))=2(r(n)n)δ12^{\log_2^{\delta_1}(\alpha(G))}=2^{(r(n)n)^{\delta_1}}2|V|δ2=22δ2s(n)n2|V|δ2=22δ2s(n)n2^{|V|^{\delta_2}}=2^{2^{\delta_2s(n) n}}

1
非负永久性的平滑复杂度
在过去的20年中,关于Permanent的工作一直做得非常出色。当然有著名的JSV算法,但这是fpras。考虑平滑化复杂度内的其他工作,存在于平滑化P中的一个强烈暗示是fpras / Psuedopolynomial算法的存在。 非负永久性是否在平滑P中有任何障碍? 提前致谢 撒拉

3
位置受限的拓扑排序的复杂性
我得到个顶点的DAG作为输入,其中每个顶点都另外加上了一些。GGGnnnxxxS(x)⊆{1,…,n}S(x)⊆{1,…,n}S(x) \subseteq \{1, \ldots, n\} 甲拓扑排序的是一个双射从顶点到,使得对所有,,如果有从一个路径到在然后。我想决定是否存在的拓扑排序,这样对于所有,。GGGfffGGG{1,…,n}{1,…,n}\{1, \ldots, n\}xxxyyyxxxyyyGGGf(x)≤f(y)f(x)≤f(y)f(x) \leq f(y)GGGxxxf(x)∈S(x)f(x)∈S(x)f(x) \in S(x) 这个决策问题的复杂性是什么? [注意:显然这是在NP中。如果查看允许的顶点/位置对的图,并且成对之间的无向边会因为违反顺序而发生冲突,那么您会得到一个不连续的图,每个图最多要选择一对,每个图最多要选择一对位置,每个顶点最多一对-似乎与3维匹配有关,但我看不出使用此特定问题的附加结构是否仍然困难。

2
程序翻译的完全完整性与完全抽象
编译器验证工作通常归结为证明编译器完全抽象:它保留并反映(上下文)对等。 代替提供完全抽象样张,由长谷川[一些最近(分类基于)编译器核查工作1,2 ]和艾格等。等 [ 3 ]证明了各种CPS翻译的完全完整性。 问题: 完全完整性和完全抽象之间有什么区别? 在我看来,完整性就像翻译的对等反映,而完整性似乎是对等保存的结果。 注意:Curien [ 7 ]和Abramsky [ 8 ]都探讨了可定义性,完全抽象以及某种程度上完全完整性之间的关系。我怀疑这些资源可能可以回答我的问题,但经过表面阅读后,我尚未确认。 某些背景:Abramsky和Jagadeesan [ 4 ] 提出了“完全完整性”一词,用以描述乘法线性逻辑的博弈语义模型的正确性。 Blute [ 5 ]提供以下定义: 令FF\mathcal{F}为自由类别。我们说一个明确的模型 MM\mathcal{M}是全面完成 FF\mathcal{F}或者说我们有 充分完整性FF\mathcal{F}相对于MM\mathcal{M},如果,相对于发电机的一些解释,独特的无仿函数[[−]]:F→M[[−]]:F→M[\![ - ]\!] : \mathcal{F} \rightarrow \mathcal{M}已满。 据我所知,[ 6 ]中的长谷川是第一个采用完全完整性来描述程序翻译而不是分类语义模型的人。在这种情况下,吉拉德从简单类型的Lambda演算转换为线性Lambda演算。后来,在[ 1 ],他定义了CPS翻译的全完整性(⋅)∘(⋅)∘(\cdot)^\circ为: Γ∘;∅⊢N:(σ∘→o)⊸oΓ∘;∅⊢N:(σ∘→o)⊸o\Gamma^{\circ};\emptyset \vdash N : (\sigma^\circ \rightarrow o) \multimap oΓ⊢M:σΓ⊢M:σ\Gamma \vdash …

2
最小化正则表达式的大小
众所周知,即使将DFA作为语言的规范,最小化正则表达式的大小也是PSPACE完整的。 如果语言是有限的,结果是什么? 一个人可以用两种模型来考虑这个问题: 输入是该语言中的所有字符串,我们通过所有字符串的长度之和来衡量输入大小。 输入是DFA,我们通过DFA的状态数来衡量输入大小。 Kleene star在有限情况下没有用,因此只有,| | 和⋅(串联)在表达式中使用。当然,正则表达式的长度似乎是任意的。相反,可以赋予每个操作权重(包括添加括号),并要求最小化正则表达式的权重。()()()|||⋅⋅\cdot 编辑:正如adrianN所指出的,它与基于语法的代码有关。产生最小长度的上下文无关文法来描述有限集是NP完全的。尚不清楚为什么最小尺寸上下文无关文法可以暗示更多关于最小尺寸正则表达式的信息。也许聪明的重写规则可以将这两者联系起来,并证明在第一个模型中,问题出在NP上。

3
子集总和与子集乘积(强与弱NP硬度)
我希望有人能够向我解释为什么子集乘积问题恰好是NP难题,而子集和问题却是弱NP难题。 子集和:鉴于和,确实存在一个子集使得。X={x1,...,xn}X={x1,...,xn}X = \{x_1,...,x_n\}TTTX′X′X'∑i∈X′xi=T∑i∈X′xi=T\sum_{i\in X'}x_i = T 子产品:鉴于和,确实存在一个子集使得。X={x1,...,xn}X={x1,...,xn}X = \{x_1,...,x_n\}TTTX′X′X'∏i∈X′xi=T∏i∈X′xi=T\prod_{i\in X'}x_i = T 我一直认为这两个问题是等效的-SS的实例可以通过取幂转换为SP实例,SP的对数可以通过对数转换为SS。这使我得出结论,它们都属于NP-hard的同一类-即它们都是弱NP-hard。 此外,似乎可以使用变化很小的动态编程(用SP中的除法代替SS中的减法)来解决相同的问题。 直到我读完Bernard Moret的“计算理论”第8章(对于那些没有这本书的人来说,它都有通过X3C证明子集产品硬度的证明-一个很强的NP难题)。 我了解这种减少,但无法弄清楚我先前的结论出了什么问题(两个问题相等)。 更新:结果表明子集乘积仅是弱NP完全的(目标乘积在是指数的)。加里(Gary)和约翰逊(Johnson)于1981年在《NP完整性》专栏中发表了这篇论文,但是我想它不如他们先前在书中声称的那样可见。Ω(n)Ω(n)\Omega (n)

1
MALL +无限制的递归类型图灵完成了吗?
如果你看一下在无类型的λ演算的递归组合程序,如Y组合或欧米伽组合子: 很明显,所有这些组合器最终都在其定义中的某个位置复制了一个变量。ωY==(λx.xx)(λx.xx)λf.(λx.f(xx))(λx.f(xx))ω=(λx.xx)(λx.xx)ÿ=λF。(λX。F(XX))(λX。F(XX)) \begin{array}{lcl} \omega & = & (\lambda x.\,x\;x)\;(\lambda x.\,x\;x)\\ Y & = & \lambda f.\,(\lambda x.\,f\;(x\;x))\; (\lambda x.\,f\;(x\;x)) \\ \end{array} 此外,所有这些组合子是分型的简单类型的演算,如果你用递归类型扩展它,其中递归类型中允许 α出现负数。μα.A(α)μα.A(α)\mu\alpha.\,A(\alpha)αα\alpha 但是,如果将完整的(负发生率)递归类型添加到线性逻辑的无指数片段(即MALL)中,会发生什么? 那你就没有指数了给你收缩。您可以使用类似!的方式对指数 类型进行编码。甲≜ μ α 。!A!A!A ,但我不知道如何定义它引进规则,因为这似乎需要一个固定的点组合子来定义。我正在尝试定义指数,收缩,定点组合器!!A≜μα.I&amp;A&amp;(α⊗α)!A≜μα.I&amp;A&amp;(α⊗α) !A \triangleq \mu\alpha.\;I \;\&\; A \;\&\; (\alpha \otimes \alpha) MALL加上无限制的递归类型是否仍在规范化‽

2
命题解决方案是一个完整的证明系统吗?
这个问题是关于命题逻辑的,所有出现的“解决”都应被理解为“命题解决”。 这个问题是非常基本的,但是已经困扰了我一段时间。我看到人们断言命题解决方案是完整的,但我也看到人们断言解决方案是不完整的。我了解解决方案不完整的含义。我也明白为什么人们可能会声称它是完整的,但是“完整”一词不同于描述自然演绎或后续演算时使用“完整”的方式。甚至限定词“反驳完成”也无济于事,因为公式必须在CNF中,并且在证明系统内不考虑通过Tseitin变换将公式变换为等效CNF公式或可满足的CNF公式。 健全性和完整性 让我们假设古典命题逻辑的设定是在结构的某些宇宙与一组公式之间的关系⊨⊨\models和结构中的经典的Tarskian真理概念之间的关系。我们写⊨φ⊨φ\models \varphi,如果φφ\varphi在考虑所有结构都是如此。我还将假设一个系统⊢⊢\vdash,用于从公式导出公式。 该系统⊢⊢\vdash是声音相对于⊨⊨\models如果每当我们有⊢φ⊢φ\vdash \varphi,我们也有⊨φ⊨φ\models \varphi。该系统⊢⊢\vdash是完全相对于⊨⊨\models如果每当我们有⊨φ⊨φ\models \varphi,我们也有⊢φ⊢φ\vdash \varphi。 决议规则 文字是原子命题或其否定词。子句是文字的析取。CNF中的公式是子句的结合。决议规则断言 分辨率规则断言,如果该条的结合C∨pC∨pC \lor p与子句¬p∨D¬p∨D\neg p \lor D是满足的,该条C∨DC∨DC \lor D也必须是可满足的。 我不确定是否可以单独将解析规则理解为证明系统,因为没有公式的引入规则。我认为我们至少需要一个允许引入子句的假设规则。 解析不完整 众所周知,分辨率是一种隔音系统。也就是说,如果我们可以得到一个条款CCC从公式FFF使用的分辨率,然后。决议还驳斥完整的意思,如果我们有 ⊨ ˚F⊨F⟹C⊨F⟹C\models F \implies C然后我们可以使用分辨率从 F导出 ⊥。⊨F⟹⊥⊨F⟹⊥\models F \implies \bot⊥⊥\botFFF 考虑配方 和 ψ := p ∨ q。φ:=p∧qφ:=p∧q\varphi := p \land qψ:=p∨qψ:=p∨q\psi := p \lor q 在根岑系统LK或使用自然推导,我可以得出蕴涵完全在证明系统内。我无法使用解析来得出这种含意,因为如果我以 φ开头,则没有解析子。φ⟹ψφ⟹ψ\varphi …

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.