1
快速计算生成树的数量
t(G)t(G)t(G)GGGnnnt(G)t(G)t(G)O(n3)O(n3)O(n^3)QGJ11n2det(J+Q)1n2det(J+Q)\frac{1}{n^2} \det(J + Q)QQQGGGJJJ111 我想知道是否有某种方法可以更快地计算。(是的,用于计算行列式的算法比算法快,但我对某些新方法感兴趣。)O (n 3)t(G)t(G)t(G)O(n3)O(n3)O(n^3) 它也有兴趣考虑特殊的图形族(平面的,也许?)。 例如,对于循环图,可以在计算经由身份算术运算,其中是的拉普拉斯矩阵的非零特征值,可以快速地为循环图计算。(将第一行表示为多项式,然后在第个单位根上进行计算-此步骤使用离散傅立叶变换,可以用算术运算完成。)O (n lg n )t (G )= 1t(G)t(G)t(G)O(nlgn)O(nlgn)O(n \lg n)λ我ģÑø(ÑLGÑ)t(G)=1nλ1⋯λn−1t(G)=1nλ1⋯λn−1t(G) = \frac{1}{n} \lambda_1 \dotsm \lambda_{n-1}λiλi\lambda_iGGGnnnO(nlgn)O(nlgn)O(n \lg n) 非常感谢你!