1
有关PP中的PH的更多信息?
赫克·贝内特(Huck Bennett)最近提出的一个问题是,PP班级中是否包含PH班级,却得到了一些相互矛盾的答案(似乎都是正确的)。一方面,一些预言结果相反,另一方面,斯科特(Scott)认为答案很可能是肯定的,因为Toda定理表明PH在BP.PP(PP的概率变异体)中,我们通常认为随机化确实可以并没有太大帮助,例如合理的硬度假设意味着PRG可以代替随机化。 现在,对于PP来说,先验性的是,即使一个“完美的” PRG都将暗示完全去随机化,因为自然的去随机化将对所有多项式可能的种子运行PRG输出的原始算法并获得多数表决,这一点尚无定论。 。尚不清楚在PP计算中获得多数表决是否可以在PP本身中完成。但是,Fortnow和Reingold的一篇论文显示,PP在真值表归约条件下被关闭(扩展了PP在交叉路口被关闭的令人惊讶的结果),这似乎足以进行多数表决。 那么,这里的问题是什么?Toda,Fortnow-Reingold和所有基于PRG的非随机化似乎都相对化了,因此就意味着对于存在适当PRG的每个预言者,PP中的PH都相对。因此,对于所有PP不包含PH的预言(例如,来自Minski&Papert,Beigel或Vereshchagin 的预言),PP的PRG不存在。特别是,这意味着对于这些预言机,EXP中没有适当的硬功能(否则将存在类似NW-IW的PRG)。从积极的一面看,这意味着在每个预言结果的某个地方都隐藏了(近似)EXP的(非均匀)PP算法。这很奇怪,因为所有这些oracle结果似乎都依赖于新的PP 下限(用于阈值电路),并且在他们的甲骨文构建机制中很简单,所以我看不到PP皮革的上限在哪里。也许这个上限通常可以显示(非均匀的)PP可以计算(或至少对某些EXP产生偏差)?这样的事情至少不会给EXP的CH模拟吗? 因此,我想我的问题有两个:(1)这种推理链是否有意义?(2)如果是这样,那么有人可以“发现” PP的隐含上限吗? 亚伦·斯特林(Aaron Sterling)编辑:将其撞到首页并添加赏金。这是我最喜欢的问题之一,但仍然没有答案。